python -m venv venv
source venv/bin/activate
/**
* @param {number[]} skill
* @param {number[]} mana
* @return {number}
*/
var minTime = function(skill, mana) {
let m = mana.length; // Number of potions
let n = skill.length; // Number of wizards
// done[i] represents the time when wizard i is ready to start the next potion
// We use n+1 to simplify indexing (done[n] will hold the final result)
let done = new Array(n + 1).fill(0);
// Loop through each potion in order
for (let j = 0; j < m; j++) {
//after clonning backend ios project:
swift package resolve
/**
* AEO AI Visibility Booster - from Imran Siddiq - https://learn.websquadron.co.uk
*/
if ( ! defined('ABSPATH') ) exit;
class AIV_Clarity_Ultra {
const OPTION = 'aiv_ultra_settings';
const NONCE = 'aiv_ultra_nonce';
public function __construct() {
// 1) Disable WordPress core sitemaps entirely (/wp-sitemap.xml and friends)
add_filter('wp_sitemaps_enabled', '__return_false');
// 2) Kill canonical redirects for our virtual endpoints so WP (or plugins)
```python
# model.py
# Training Load Perception Neural Network (TLPNN)
# Training Load Perception Mechanism (TLPM)
# Inspired by He et al. (2023), IEEE Access
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------
# Multimodal Encoders
# -----------------------
class ModalityEncoder(nn.Module):
"""Encoder for each modality (video, sensor, etc.)"""
def __init__(self, in_dim, latent_dim):
super().__init__()
self.fc =
```python
# model.py
# Adaptive Multimodal Attention Network (AMAN)
# Adaptive Multimodal Attention Strategy (AMAS)
# Inspired by Hao, Zhao, Qiao (2023) IEEE Access
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------
# Modality-specific Encoders
# -----------------------
class ModalityEncoder(nn.Module):
"""Simple encoder for each modality (text, audio, visual)."""
def __init__(self, in_dim, latent_dim):
super().__init_
```python
# model.py
# Reference skeleton for SensorFusion-SportsHealth
# Inspired by Hui Wang & Wanxin Du (2023), IEEE Access
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------
# Multimodal Encoders
# -----------------------
class SensorEncoder(nn.Module):
"""Encodes a single sensor modality."""
def __init__(self, in_dim, latent_dim):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(in_dim, l
```python
# model.py
# Reference implementation for HarmonyNet-style recommender:
# - Collaborative filtering (matrix factorization)
# - Multimodal fusion (audio/text/image)
# - Lightweight graph propagation over item nodes
# - Optional rule-based reasoning for interpretability
#
# This is a scaffold you can extend with your real data pipeline.
from typing import Optional, Dict, List, Any, Tuple
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
#
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DFBM(nn.Module):
"""
Dynamic Fitness Behavior Model
Combines CNN (spatial) + RNN (temporal) + Attention
"""
def __init__(self, input_dim, hidden_dim=64, num_classes=5):
super().__init__()
self.conv1 = nn.Conv1d(input_dim, hidden_dim, kernel_size=3, padding=1)
self.rnn = nn.GRU(hidden_dim, hidden_dim, batch_first=True)
self.attn = nn.Linear(hidden_d
```python
import numpy as np
class HIM_Agent:
def __init__(self, state_dim, action_dim, alpha=0.1, beta=0.2, gamma=0.9):
"""
Harmonious Interaction Model (HIM) agent
:param state_dim: dimension of state vector
:param action_dim: number of actions
"""
self.state_dim = state_dim
self.action_dim = action_dim
self.alpha = alpha # engagement weight
self.beta = beta # performance weight
self.gamma =
import numpy as np
class DynamicPathGenerationModel:
def __init__(self, decay_rate=0.1, alpha=0.5, beta=0.7, theta=(0.5, 0.3, 0.2)):
"""
Initialize model parameters
:param decay_rate: Ξ» for temporal decay
:param alpha: weight for attribute relevance
:param beta: weight for event significance
:param theta: coefficients for utility function
"""
self.decay_rate = decay_rate
self.alpha = alpha
self.beta
```python
# model.py
# CRVG + KDAM implementation (PyTorch)
# Author: Weiwei Yi (paper); reference code by ChatGPT
# Note: This is a simplified prototype
import torch
import torch.nn as nn
import torch.nn.functional as F
# -------------------------
# Relation-specific Graph Attention
# -------------------------
class RelationalGATLayer(nn.Module):
def __init__(self, in_dim, out_dim, num_relations):
super().__init__()
self.relation_weights = nn.ModuleList([nn
```python
# model.py
# VitalWatch-PTRE-DCAS: PyTorch reference implementation
# Core components:
# 1) Decay-aware temporal encoding (per-signal) with GRUCell
# 2) Graph-based relational modeling with attention-weighted adjacency
# 3) Contextual fusion via MultiheadAttention (Transformer-style)
# 4) DCAS head: signal-wise attention, exponential memory, domain-adaptive threshold
# 5) Optional Monte-Carlo dropout for uncertainty
from typing import Optional, Dict
import torch
import tor
```python
# model.py
# EthosGraph + VirtueFlow implementation
# Based on Feng Xianjing (2023), IEEE Access
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------
# EthosGraph
# -----------------------
class EthosGraph(nn.Module):
def __init__(self, in_dim=128, hidden_dim=256, embed_dim=64):
super().__init__()
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, embed_dim)
def forward
```python
# model.py
# LAREN (Latent Risk Equilibrium Network) + ARDIS (Anticipatory Risk-Driven Intervention Strategy)
import torch
import torch.nn as nn
import torch.nn.functional as F
# --------------------------
# LAREN Components
# --------------------------
class LAREN(nn.Module):
def __init__(self, state_dim=128, action_dim=32, latent_dim=64):
super().__init__()
# Risk Encoder
self.encoder = nn.Sequential(
nn.Linear(state_dim + a
```python
# model.py
# MusicaNovaNet + Cognitone Calibration
# Reference PyTorch implementation based on Si Zhang's paper (2023)
import torch
import torch.nn as nn
import torch.nn.functional as F
# -------------------------------
# MusicaNovaNet Components
# -------------------------------
class MultimodalEncoder(nn.Module):
def __init__(self, input_dim=128, hidden_dim=256):
super().__init__()
self.gru_task = nn.GRU(input_dim, hidden_dim, batch_first=True)