# model.py
# PyTorch reference implementation of GTRM
# - Heterogeneity-Aware Encoding (HAE)
# - Cross-Omics Fusion Network (COFN)
# - Mutation–Drug Scoring (MDS)
#
# This code is framework-faithful to the paper while remaining concise and easy to extend.
from dataclasses import dataclass
from typing import Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------------
# Utilities
# -----------------------------
d
# model.py
# PlasmoNet: Hierarchical encoder + Dual-Branch Attention + Graph-Based Reasoning
# with PlasmoAdapt utilities for domain adaptation.
#
# This implementation follows the design described in the uploaded article:
# - Hierarchical Visual Encoding (Sec. 3.3; Fig. 1–2)
# - Dual-Branch Attention (Eq. 13–17)
# - Graph-Based Inference (Eq. 18–21)
# - PlasmoAdapt (prototype alignment, consistency & spectral matching; Eq. 23–34)
#
# Minimal dependencies: torch
from typing import D
# model.py
# Reference PyTorch implementation of SDGN + ACR
# Derived from the uploaded article's method section and equations.
# Minimal dependencies: torch, numpy
from __future__ import annotations
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------
# Utilities
# ---------------------------
def pairwise_sqdist(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
Compute squared Euclidea
```python
# model.py
# A compact PyTorch implementation inspired by CGINet + SARM for medical image segmentation
# from: "Deep learning uncertainty quantification method for image segmentation and treatment decision-making in radiation oncology"
# Key components: Semantic Projection Mechanism (SPM), Cross-Concept Interaction Modeling (CCIM),
# Layer & Sequence Alignment (LSA), and SARM attribution refinement / consistency.
#
# NOTE:
# - This is a minimal, readable reference, not a hype
# model.py
# Reference PyTorch implementation of MedStructFormer + KIDL ideas (2D classification)
# Paper reference: "Enhancing Image Classification Reliability in Radiation Oncology via Uncertainty Quantification"
# Key elements: Anatomical Positional Encoding (Eq. 15), Anatomically-Constrained Attention (Eqs. 16–18),
# Multi-scale outputs (Eqs. 20–24), Knowledge-Gated Modulation (Eq. 26), MC-Dropout uncertainty (Eqs. 36–37).
from typing import List, Optional, Tuple
import math
import
### Replaces all newline characters in input.txt with spaces, outputting a single-line result.
```sh
sed ':a;N;$!ba;s/\n/ /g' input.txt
```
### Change ownership of current directory (recursive)
```sh
# Run with sudo to change ownership
# Set both user and group to the current logged-in user
# Apply recursively (-R) to all files and subdirectories
sudo chown -R "$USER:$USER" "$PWD"
```
### Convert images to PDF and extract images from PDF
```sh
# Install tools
sudo apt install img2pdf popple
### Reset branch to a specific commit
```sh
git reset --hard <commit_id> # Move local branch to the given commit, discarding changes
git push --force <remote> <branch> # Overwrite remote branch history with local state
```
### Git configuration behind a proxy
```
git config user.name "Your Name"
git config user.email "your.email@example.com"
# Proxy via cntlm
git config http.proxy 'http://127.0.0.1:3128'
git config https.proxy 'http://127.0.0.1:3128'
# Cache credentials for 30 days
git
apex.theme.closeRegion("ALTERA_RECEBEDOR");
document.addEventListener("DOMContentLoaded", () => {
const footer = document.querySelector(".l-footer");
const banner = document.querySelector(".floating-banner");
if (!footer || !banner) return;
const observer = new IntersectionObserver((entries) => {
entries.forEach((entry) => {
if (entry.isIntersecting) {
// footerが見えたら非表示
banner.classList.add("is-hidden");
} else {
// footerが見えなくなったら表示
banner.classList.remove("is-hidden");
}
// フローティングバナーの表示制御
document.addEventListener('DOMContentLoaded', function () {
const fixedEl = document.querySelector('.-fixed');
const kvEl = document.querySelector('.sectionKv_ttl');
const ctaEl = document.querySelector('.ctaContainerBottom_block');
if (!fixedEl || !kvEl || !ctaEl) return;
const kvHeight = kvEl.offsetHeight;
function getTriggerPoint() {
if (window.innerWidth <= 768) {
return kvHeight * 0.25; // SP
} else {
return kvHeight * 0.1; // PC
}
$DCs = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain().DomainControllers.Name
$ScriptBlock = { Get-ChildItem -Path Cert:\LocalMachine\My | Select-Object -ExpandProperty EnhancedKeyUsageList }
Invoke-Command -ScriptBlock $ScriptBlock -ComputerName $DCs -ErrorAction SilentlyContinue | Select-Object -Property * -ExcludeProperty RunspaceId | Sort-Object -Property PSComputerName | Where-Object FriendlyName -match 'smart card' | Format-Table -AutoSize
when we open a terminal on Unix machine - the default shell is Bash
to check type:
which $SHELL
#! - shebang
BASH - the Bourne again shell
to activate BASH from kali type:
bash
bash starts with $
BASH is also dynamic interpreted command language that can be used to write scripts
to create a custom script to add to my project create a file that ends with .sh or with no extencion:
touch filename.sh or filename
write command like:
echo "my script"
create variables:
GREET="Rita"
to access th
/**
* @param {number[][]} points
* @return {number}
*/
var numberOfPairs = function(points) {
let count = 0;
// Step 1: Sort points by x ascending, then y descending
// This ensures that for any point[i], all point[j] with j < i have x <= x[i]
points.sort((a, b) => {
if (a[0] === b[0]) return b[1] - a[1]; // If x is equal, sort by y descending
return a[0] - b[0]; // Otherwise, sort by x ascending
});
// Step 2: Iterate through each point[i] as potenti
# Core scientific stack
numpy>=1.24.0
pandas>=2.0.0
scipy>=1.11.0
# Deep learning framework
torch>=2.0.0
torchvision>=0.15.0
torchaudio>=2.0.0
# Machine learning & utilities
scikit-learn>=1.3.0
networkx>=3.1
tqdm>=4.65.0
# Optimization
cvxpy>=1.3.2
# Data handling
xarray>=2023.1.0
netCDF4>=1.6.4
pyyaml>=6.0
hydra-core>=1.3.2
# Visualization
matplotlib>=3.7.0
seaborn>=0.12.2
plotly>=5.14.0
# Optional: GPU accelerated optimization (only if CUDA is available)
cup
// Check if any QuoteHed row is marked for deletion
var deletedQuote = ds.QuoteHed.FirstOrDefault(r => r.RowMod == "D");
if (deletedQuote != null)
{
// Throw a business logic exception to prevent deletion
// This ensures the user cannot delete sales quotes through the UI or service
throw new BLException("Sales Quote deletion is not allowed.");
}
#include <WiFi.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <DHT.h>
#include <BlynkSimpleEsp32.h>
#include <NTPClient.h>
#include <WiFiUdp.h>