#!/usr/bin/env python3
"""
Apply OpenTelemetry instrumentation to Absinthe dependencies.
Faster and more reliable than shell scripts with complex regex patterns.
"""
import os
import sys
import subprocess
import re
from pathlib import Path
def apply_resolution_ex():
"""Apply patches to deps/absinthe/lib/absinthe/phase/document/execution/resolution.ex"""
print("📝 Patching resolution.ex...")
file_path = "deps/absinthe/lib/absinthe/phase/document/execution/resolution.ex"
with op
def main():
pass
if __name__ == '__main__':
main()
<div class="pattern"></div>https://hoge.com?q=ここに1万文字とか入ってくる場合RFC 3696 (メールアドレスの長さについて解説)
https://datatracker.ietf.org/doc/html/rfc3696
RFC 5321 (SMTP - Simple Mail Transfer Protocol)
https://datatracker.ietf.org/doc/html/rfc5321
RFC 5322 (メールアドレスのフォーマット定義)
https://datatracker.ietf.org/doc/html/rfc5322
tail -n+2 ${PRJ_DIR}/All_Identifiers_OCP_Data.csv | \
awk 'BEGIN { FS = OFS = "," }
{ if (seen[$2$3$4$5]=="") seen[$2$3$4$5]=$1 ;\
print $1, seen[$2$3$4$5]}' > ${PRJ_DIR}/linkage/dedup/duplicate_map
Build a key out of 4 fields
key = $2$3$4$5
Check if this key has been seen before
if (seen[key] == "")
seen[key] = $1
This means:
✔ If this exact combination of fields 2+3+4+5 has NOT been seen before
Store field1 as the first ID associated with this combination.
✔ If it# 公式用語
ここで言う公式用語は、RFCやIANA・ICANNなどで一般的に使われている用語とする。
## ドメイン
`example.com` `com` `example.co.jp` `co.jp` `jp` のように、ドットで区切られた階層構造のこと。
`example.co.jp` だけがドメインじゃなくて、 `co.jp` `jp` `com` もドメインと呼ぶ。
## ルートドメイン
`example.com.` `com.` `example.co.jp.` `co.jp.` のように、本当はドメインの最後についている「.」のこと。
最後の「.」以外はドメインではなく、ただの区切り文字で全く意味が違うので注意。
ちなみに、例えば `example.com.` の場合 `com` はあくまで `com` であって `.com` などではないし、 `example` も `example.` ではない。
## ラベル
`example.co.jp` でいうと `example` `co` `jp` と# move all files
find . -type f -exec bash -c 'mkdir -p "${1%/*}/$(date -r "$1" "+%Y")"; mv "$1" "${1%/*}/$(date -r "$1" "+%Y")/"' _ {} \;
# copy files
find . -type f -exec bash -c 'mkdir -p "${1%/*}/$(date -r "$1" "+%Y")"; cp "$1" "${1%/*}/$(date -r "$1" "+%Y")/"' _ {} \;## Entry Syntax
```00000004 Install-map entry missing component key in populate [l:COMPONENT_NAME_LENGTH]'COMPONENT_NAME' [l:COMPONENT_VERSION_LENGTH]```
## Meaning
The ```identity``` name is missing under ```HKEY_LOCAL_MACHINE\COMPONENTS\DerivedData\VersionedIndex\...\ComponentFamilies\COMPONENT_NAME\v!COMPONENT_VERSION```.## Entry Syntax
```00000003 PopulateComponentFamilies ignoring identity-less key [l:COMPONENT_NAME_LENGTH]'COMPONENT_NAME'```
## Meaning
The ```identity``` name is missing under ```HKEY_LOCAL_MACHINE\COMPONENTS\DerivedData\VersionedIndex\...\ComponentFamilies\COMPONENT_NAME```./**
* @param {number} k
* @return {number}
*/
var smallestRepunitDivByK = function(k) {
// Step 1: Handle impossible cases
// Any number made only of '1's is odd and not divisible by 2 or 5.
// So if k has a factor of 2 or 5, return -1 immediately.
if (k % 2 === 0 || k % 5 === 0) {
return -1;
}
// Step 2: Initialize variables
// remainder will track (current number % k) without building the full number.
// length will track how many '1's we've added so#sourcetree使用技巧
- ## 查看文件的提交历史
选中文件右键 -> `查看选中的修改日志`
# git总结
## `git reset --mixed <commit>`、`git reset --soft <commit>`、`git reset --hard <commit>`区别

_______ JEANSON ANCHETA_______
🌎
💻💸 Fresh Logs Pricing 💸💻
🔐 UK/US Logs / Clean Bank Drops (GBP/$)
💰 10K GBP/$ = 250
💰 12K GBP/$ = 300
💰 16K GBP/$ = 350
💰 20K GBP/$ = 500
💰 30K GBP/$ = 800
🛡️ Verified • HQ Access • Fast Delivery
💬 DM for escrow or direct 🔥
WESTERN UNION / MONEY GRAM/BANKS LOGINS/BANK TRANFERS/PAYPAL TRANSFERS WORLDWIDE/CASHAPP/ZELLLE/APPLE PAY/SKRILL/VENMO TRANSFER
Telegram:@JeansonTooL https://t.me/+2__ynBAtFP00M2Fk
https://t.me/+CsF2t7Hvimport os
import json
from typing import Dict, Any
import pandas as pd
import numpy as np
from sklearn.feature_selection import VarianceThreshold
def variance_threshold_report(df_clean: pd.DataFrame, threshold: float, json_path: str):
"""
Perform Variance Threshold feature selection and save report as JSON.
The internal logic and steps remain exactly as the user provided.
"""
# ----- STEP 1: Select numeric features -----
dfnumeric = df_clean.select_dtypes(/**
* @param {number[]} nums
* @return {boolean[]}
*/
var prefixesDivBy5 = function(nums) {
// Result array to store true/false for each prefix
let answer = [];
// We'll keep track of the current number modulo 5
// This avoids dealing with huge binary numbers directly
let currentMod = 0;
// Iterate through each bit in nums
for (let i = 0; i < nums.length; i++) {
// Shift left (multiply by 2) and add the new bit
// Example: if currentMod = 2 (binar