<p class="text">テキスト</p># メール認証技術(SPF・DKIM・DMARC)学習メモ
---
## 1. SPF(Sender Policy Framework)
### 概要
- 「このドメインからのメールは、これらのIPアドレスから送信される」とDNSで宣言する仕組み
- 受信サーバーが送信元IPをSPFレコードと照合し、正当性を検証する
### なぜ必要か
- SMTPプロトコルは送信元アドレスを検証する仕組みを持たない
- 任意のサーバーから任意の送信元アドレスでメール送信が可能
- SPFにより、ドメイン所有者が「正当な送信元IP」を定義できる
### 設定場所
- ドメインのDNS TXTレコード
### レコード例
```
example.com. IN TXT "v=spf1 ip4:203.0.113.1 include:_spf.google.com -all"
```
| 部分 | 意味 |
|------|------|
| `v=spf1` | SPFバージョン1 |
| `ip4:203.0.113.1` | このIPからの送信を許可 |
| `include:.hoge{
/*ここの詳細度は1*/
}
.hoge.hoge{
/*ここの詳細度は2*/
}#!/bin/sh
dconf reset -f /org/gnome/shell/extensions/dash-to-panel/
services:
postgres:
image: postgres:16-alpine
container_name: n8n-postgress
restart: always
environment:
- POSTGRES_USER=${POSTGRES_USER}
- POSTGRES_PASSWORD=${POSTGRES_PASSWORD}
- POSTGRES_DB=${POSTGRES_DB}
volumes:
- ./postgres_data:/var/lib/postgresql/data
n8n:
image: n8nio/n8n:latest
container_name: n8n
restart: always
environment:
- DB_TYPE=postgresdb
- DB_POSTGRESDB_DATABASE=${POSTGRES_DB}
- DB_POSTGRESDB_HOfrom sqlalchemy import create_engine, Column, Integer, String, DateTime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
# SQLite Database (local file - no configuration needed)
DATABASE_URL = "sqlite:///./complaints.db"
engine = create_engine(DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()
class Complaint(Base):
__tablen/**
* @param {number} n
* @return {number}
*/
var numOfWays = function(n) {
const MOD = 1_000_000_007;
// a = number of ABC patterns for the current row
// b = number of ABA patterns for the current row
let a = 6; // ABC has 6 permutations
let b = 6; // ABA also 6 valid patterns
// Build row by row using the recurrence
for (let i = 2; i <= n; i++) {
// Compute next row counts based on transitions
let nextA = (2 * a + 2 * b) % MOD; // ABC -> ABCecho $SHELL
# Filter only >90Days and >180Days
filtered_df = open_aging_df[open_aging_df['Age_Bucket'].isin(['>90Days', '>180Days'])]
# Pivot table with complaint type + age bucket
pi_data_df = pd.pivot_table(
filtered_df,
values='CLOSED/OPEN',
index=['COMPLAINT TYPE'],
columns=['Age_Bucket','DEPT'],
aggfunc='count',
fill_value=0
)
# ➡️ Add Grand Total column (row-wise sum)
pi_data_df['Grand_Total'] = pi_data_df.sum(axis=1)
# ➡️ Add Grand Total row /**
* @param {number[]} nums
* @return {number}
*/
var repeatedNTimes = function(nums) {
// We'll use a Set to track which numbers we've seen.
const seen = new Set();
// Walk through each number in the array
for (let num of nums) {
// If we've seen this number before, it must be the one
// that is repeated n times (because only one element repeats).
if (seen.has(num)) {
return num;
}
// Otherwise, record it as ssudo dnf remove nginx
dnf install nginx
dnf upgrade or dnf update### Install OpenAI SDK across Multiple Languages
Source: https://platform.openai.com/docs/quickstart_api-mode=chat
This section provides instructions for installing the official OpenAI SDK or client libraries for various programming languages. These installations are prerequisites for making API calls to the OpenAI service.
```JavaScript
npm install openai
```
```Python
pip install openai
```
```C#
dotnet add package OpenAI
```
```Java
<dependency>
<groupId>com.openai</groupId>
<artifa# Notesimport sys
import pandas as pd
import numpy as np
from flask import Flask, jsonify, request
from src.logging.logger import get_logger
from src.exceptions.exception import CustomException
logger = get_logger(__name__)
# flask_app.py
# -----------------------------------------------------------------------------
# Try to import custom modules
# -----------------------------------------------------------------------------
try:
from src.constants.paths import dataset_path