SAEN-PIGO Employment Prediction

# SAEN-PIGO Employment Prediction This repository provides a reference implementation of the **Stratified Adaptive Employment Network (SAEN)** and the **Policy-Informed Generative Optimization (PIGO)** framework for employment prediction and policy simulation. The code is inspired by the paper *"Deep Learning for College Graduates Employment Prediction: A Computational Approach"* and adapts its main ideas into a practical deep learning project structure. --- ## 1. Overview Modern labor markets are highly dynamic and influenced by: - Individual characteristics (education, age, region, skills) - Employment histories (transitions between employed, unemployed, inactive) - Macroeconomic indicators (unemployment rate, GDP, sector demand) - Policy interventions (subsidies, training programs, incentives) Traditional statistical models often struggle to capture: - Non-linear relationships - Long-term temporal dependencies - Heterogeneity across different groups - Direct effects of policy constraints This project implements a deep learning framework that addresses these issues through: - **SAEN**: A stratified, sequence-based model for employment trajectories - **PIGO**: A policy optimization layer that operates on top of SAEN --- ## 2. Main Components ### 2.1 Stratified Adaptive Employment Network (SAEN) SAEN is designed to model employment dynamics as sequences of states over time: - Each individual belongs (probabilistically) to a **latent stratum** (e.g., age group, education level, region). - Each stratum has its own recurrent unit to capture **group-specific temporal patterns**. - The model incorporates: - **Employment state embeddings** (employed, unemployed, inactive) - **Duration / tenure information** (how long in the current state) - **Individual covariates** (demographics, skills) - **Macroeconomic variables** (e.g., labor market indicators) - **Policy actions** (e.g., training, subsidies) Core ideas: - **Stratum-aware sequence modeling** via group-specific recurrent networks - **Duration and action integration** so the transition probability depends on tenure and interventions - **Macroeconomic attention** to focus on the most relevant historical macro signals - **Residual individual adaptation** to fine-tune group-level behavior for a specific person ### 2.2 Policy-Informed Generative Optimization (PIGO) PIGO is a policy learning and simulation layer that uses SAEN as an environment model. Key ideas: - Treat employment transitions as a **sequential decision problem** - Define a **reward function** that encodes social or organizational objectives, such as: - Higher employment rates - Lower unemployment duration - Fair outcomes across demographic groups - Learn a **stochastic policy** that maps states to policy actions - Integrate: - **Budget or cost constraints** - **Temporal smoothness constraints** (discourage drastic policy changes over time) - **Fairness regularization** across strata The result is a framework that can: 1. Predict employment trajectories under existing conditions 2. Simulate counterfactual outcomes under alternative policies 3. Optimize policies within realistic constraints --- ## 3. Model - `model.py`:Core implementation of SAEN, macroeconomic attention, and PIGO policy network. --- ## 4. Data Representation Although actual datasets are not bundled, the model is designed for generic employment data of the form: - **Sequential records per individual**: - Discrete time steps (e.g., months) - Employment state labels per time step - Tenure in current state - Individual covariates over time (static or slowly varying) - Macroeconomic indicators over time (shared across individuals) - Policy actions applied at each time step The dataset class in this repository is written in a way that you can adapt it to: - Graduate employment datasets - Sector-specific labor datasets - Organizational workforce planning datasets --- ## 5. Training and Evaluation ### 5.1 Training the SAEN model High-level steps: 1. Prepare sequences for each individual. 2. Build train / validation / test splits (preferably chronological). 3. Initialize the SAEN model: - Number of strata - Hidden dimension - Embedding sizes for states, duration, actions - Sizes for individual and macro features 4. Optimize a sequence loss (e.g., negative log-likelihood of next-state prediction). 5. Optionally add: - L1/L2 regularization on parameters - Group sparsity or entropy regularization on strata usage You can integrate early stopping based on validation accuracy, F1 score, or other metrics. ### 5.2 Training the PIGO policy After SAEN is reasonably trained, the policy layer can: - Use SAEN as a **simulator** to roll out trajectories under different policies. - Optimize policy parameters using a policy gradient algorithm: - Estimate returns along sampled trajectories - Include budget constraints via penalties in the loss - Include fairness constraints via penalties on group-level employment gaps - Use a baseline network to reduce gradient variance Evaluation metrics may include: - Overall employment rate at the horizon - Average unemployment duration - Group-level employment parity - Policy cost or budget consumption --- ## 6. Fairness and Ethics Employment prediction and policy simulation can impact real people. This project encourages: - **Fairness-aware training**: - Measure outcomes per stratum (e.g., by region, gender, education level). - Penalize large disparities between groups. - **Transparent use**: - Use the models as decision support, not as the sole decision-maker. - Communicate uncertainty and possible biases in data. - **Ongoing auditing**: - Regularly check performance and fairness metrics. - Update models and policies when data distribution shifts. --- ## 7. Extending the Project Possible directions: - Replace the recurrent backbone with transformer-style sequence encoders. - Add graph-based modules for: - Skill transition graphs - Employer-employee networks - Regional labor mobility graphs - Integrate causal inference techniques to better identify: - True effects of policies - Confounding factors Potential applications: - National or regional labor policy analysis - University graduate employability studies - Organizational workforce planning - Sector-specific labor market analytics --- ## 8. Citation If you use this implementation in a research project or derived work, please cite the original paper on which this implementation is conceptually based, as well as your own project or publication. ---
from __future__ import annotations

from dataclasses import dataclass
from typing import Optional, Tuple, Dict, Any

import math
import torch
from torch import nn, Tensor
from torch.nn import functional as F


# ---------------------------------------------------------------------------
# Utility helpers
# ---------------------------------------------------------------------------


def sequence_mask(lengths: Tensor, max_len: Optional[int] = None) -> Tensor:
    """
    Create 

indexedDBでブラウザ内でDBを扱うサンプル

<div class="app-container">
  <div class="operations-container">
    <div class="container">
      <!-- 2. ユーザー管理 -->
      <div class="section">
        <h2 class="section-title">ユーザー管理</h2>
        <input class="input" type="text" id="userName" placeholder="ユーザー名" />
        <button class="button" id="addUser">ユーザー追加</button>
        <button class="button" id="getAllUsers">ユーザー一覧</button>
        <button class="button" id="generateSampleUsers">サンプルユーザー生成(3件)</button>
        <button class="but

データ特性別のブラウザストレージどれ使うかの基準

/*
ブラウザストレージの目的別使い分けサンプル

【認証トークン】→ HttpOnly Cookie
  - セキュリティ最優先
  - XSS攻撃から保護
  - サーバー側で設定
  ※注意: localStorageに保存しない(XSS攻撃で盗まれる)

【ユーザー設定(テーマ、言語など)】→ localStorage
  - 永続的に保存
  - 5-10MBまで保存可能
  - 即座に読み書き可能(await不要)
  ※注意: プライベートブラウジングでは動作しない場合あり

【一時的なフォーム入力】→ sessionStorage
  - タブを閉じたら消える
  - ページ遷移では保持
  - セッション内のみ有効
  ※注意: 別タブ間では共有されない

【大容量データ(画像、動画、大量レコード)】→ IndexedDB
  - 数百MB〜GB保存可能
  - 非同期処理必須
  - 複雑なデータ構造OK

【トラッキング・分析】→ ファーストパーティCookie
  - SameSite属性でCSRF対策
  - 有効期限設定可能
  - クロスサイトで読み取り可

sns共有時のurlサンプル

<a href="https://twitter.com/intent/tweet?text=共有するテキスト&url=https://example.com&hashtags=タグ1,タグ2">Twitterで共有</a>
<br>
<a href="https://www.facebook.com/sharer/sharer.php?u=https://example.com">Facebookで共有</a>
<br>
<a href="https://line.me/R/msg/text/?共有するテキスト%0Ahttps://example.com">LINEで共有</a>

safariはselectのonchangeで新しいタブでのページ遷移やテキストのコピーなどを行えない

<select id="actionSelect">
  <option value="open">window.openを実行</option>
  <option value="copy">クリップボードにコピー</option>
</select>

justify-contentやalign-itemsがcenterのときに両端を見切れさせない

<ul class="list">
  <li class="item">項目</li>
  <li class="item">項目</li>
  <li class="item">項目</li>
  <li class="item">項目</li>
  <li class="item">項目</li>
  <li class="item">項目</li>
  <li class="item">項目</li>
</ul>

svgフィルターでテキスト縁取り

<p class="css">CSSで縁取り文字</p>
<p class="svg-dilate">縁取り文字 Dilate</p>
<p class="svg-erode">縁取り文字 Erode</p>

<svg class="for-stroke">
  <filter id="filter-dilate">
    <feMorphology operator="dilate" radius="1" result="DILATED" />
    <feComposite in="DILATED" in2="SourceGraphic" operator="out" />
  </filter>
  <filter id="filter-erode">
    <feMorphology operator="erode" radius="1" result="ERODED" />
    <feComposite in="ERODED" in2="SourceGraphic" operator="xor" />
  </filter>
</svg>

virtualenv

#instalar
sudo apt-get install python-virtualenv

#creo el entorno
virtualenv -p python3 py3env

#entro al entorno
source py3env/bin/activate

#salgo del entorno
deactivate

Fresh WU Trf Bug Dumps+pin 101 201 PayPal Logs CashApp transfer Bank to Bank Transfer Drop Wire Logs ATM Cards cPanel host



______JEANSON ANCHETA______


Stop Paying for Fluff. Start Getting Results.


                    🌍 


🛡️ Verified • HQ Access • Fast Delivery
💬 DM for escrow or direct 🔥
WESTERN UNION / MONEYGRAM / BANK LOGINS / BANK DROP/ PAYPAL TRANSFER GLOBAL / CASHAPP / ZELLE / APPLE PAY / SKRILL / VENMO TRANSFER
©2025  Telegram: @JeansonTooL
https://t.me/+2__ynBAtFP00M2Fk
https://t.me/+CsF2t7HvV_ljMmU8


Hello fam, offering HQ services 💻💸 — got WU pluggz, bank logs w/ fullz, PayPal jobz, Skrill flips 🔥. 

ObjectHook

/**
 * 全局重写 Object.prototype.hasOwnProperty,实现调用监控。
 */
function hijackGlobalHasOwnProperty() {
    // 1. 备份原生的 hasOwnProperty 方法
    const originalHasOwnProperty = Object.prototype.hasOwnProperty;
    
    if (originalHasOwnProperty.__is_hooked__) {
        console.log("⚠️ hasOwnProperty 已经被 Hook,跳过重写。");
        return;
    }

    // 2. 定义新的监控函数
    function monitoredHasOwnProperty(prop) {
        // 获取当前检查的对象(this 指向被检查的对象)
        // 尝试获取对象名,或使用其字符串表示
        let objectId = t

757. Set Intersection Size At Least Two

You are given a 2D integer array intervals where intervals[i] = [starti, endi] represents all the integers from starti to endi inclusively. A containing set is an array nums where each interval from intervals has at least two integers in nums. For example, if intervals = [[1,3], [3,7], [8,9]], then [1,2,4,7,8,9] and [2,3,4,8,9] are containing sets. Return the minimum possible size of a containing set.
/**
 * Finds the minimum number of integers needed so that
 * each interval contains at least two chosen numbers.
 *
 * @param {number[][]} intervals - Array of [start, end] intervals
 * @return {number} - Minimum number of integers chosen
 */
var intersectionSizeTwo = function(intervals) {
    // Step 1: Sort intervals
    // - Primary: by end ascending (smaller right boundary first)
    // - Secondary: by start descending (larger left boundary first if ends are equal)
    intervals.sort((a, b)

virtualenv

# instalar virtualenv

sudo apt-get install python-virtualenv


#crear un entorno virtual para python3

virtualenv -p /usr/bin/python3 py3env


# activar el virtualenv para trabajar ahi adentro

source py3env/bin/activate

#para salir de un entorno virtual 

deactivate


una vez en el entorno virtual puedo instalar pymysql

pip install "pymysql<1.0"

tengo q poner <1.0 porque el python3.4 no soporta f string y da error al instalar.







proxy

// 定义全局对象,兼容浏览器(window)和Node.js(global)
const globalScope = typeof window !== 'undefined' ? window : globalThis;

/**
 * 批量环境代理函数 (Hook)
 * @param {Array<string>} proxy_array - 需要代理的对象名称数组,例如 ['window', 'location']
 */
function batchProxy(proxy_array) {
    proxy_array.forEach(name => {
        // 1. 获取当前环境中的对象,如果不存在则初始化为空对象
        let target = globalScope[name];
        if (!target) {
            target = {};
            globalScope[name] = target; // 将新建的空对象挂载到全局
        }

  

Force garbage collection to free up / clean memory

import gc

## --> here script content or loop-iteration
# clean memory
gc.collect()

Fresh CC Fullz Bank Logs Paypal Transfer WU Transfer Bug MoneyGram CashApp Zelle Venmo Apple Pay Skrill Transfer ATM Cards.



______JEANSON ANCHETA______


Stop Paying for Fluff. Start Getting Results.


                          🌍 


🛡️ Verified • HQ Access • Fast Delivery
💬 DM for escrow or direct 🔥
WESTERN UNION / MONEYGRAM / BANK LOGINS / BANK DROP/ PAYPAL TRANSFER GLOBAL / CASHAPP / ZELLE / APPLE PAY / SKRILL / VENMO TRANSFER
©2025  Telegram: @JeansonTooL
https://t.me/+2__ynBAtFP00M2Fk
https://t.me/+CsF2t7HvV_ljMmU8


Hello fam, offering HQ services 💻💸 — got WU pluggz, bank logs w/ fullz, PayPal jobz, Skrill fli

shopifyメモ

・[Shopify無料テーマ「Dawn」のECサイト参考事例!日本企業の活用例を業界別にご紹介](https://lp.makegift.me/blog/2152/)  
・[[Shopify] ポリシーページをカスタマイズする方法(Debutテーマ)](https://torublog.com/shopify-policy-pages-customize/)