from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------------------------------
# Utility modules
# ---------------------------------------------------------------------------
class MLP(nn.Module):
"""Simple multi-layer perceptron with LayerNorm and residual option."""
def __init__(
---
# ✔️ 4. model.py(较长、结构清晰的代码,无需真实可运行)
```python
"""
model.py
Implementation of the Lexical-Semantic Alignment Network (LSAN)
and supporting components inspired by the research framework.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------
# Embedding Modules
# ---------------------------------------------------
class LexicalEmbedding(nn.Module):
"""Basic word embedding layer."""
def from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, Any, Optional, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------------------------------
# Data containers
# ---------------------------------------------------------------------------
@dataclass
class CreditGraphBatch:
"""
Container for a mini-batch of fiscal knowledge graph data.
Simport torch
import torch.nn as nn
import torch.nn.functional as F
class CoefficientDecouplingLayer(nn.Module):
"""
Implements the coefficient decoupling strategy:
y_hat = γ * (s^T θ_s) + (1 - γ) * (u^T θ_u)
"""
def __init__(self, dim_sensitive, dim_nonsensitive):
super().__init__()
self.theta_s = nn.Parameter(torch.randn(dim_sensitive))
self.theta_u = nn.Parameter(torch.randn(dim_nonsensitive))
self.gamma = nn.Parameter(torch.tfrom __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Tuple, Dict, Any
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------------------------------
# Utility dataclasses
# ---------------------------------------------------------------------------
@dataclass
class GridBatch:
"""
Container for a mini-batch of grid data.
Shapes (typical):
xYou are an expert UX/SEO copywriter.
You have a wealth of organic SEO knowledge and you understand how to make websites perform for search engines and agentic search.
You are also an established copywriter for UX, you know how to strike the perfect balance between converting a user and making it perform well in the digital space.
You write in plain english that an 8 year old can understand, you don't use emdashes and you exclusively write in british english.npx playwright show-reportadd_action( 'wpcf7_before_send_mail', function( $contact_form ) {
$submission = WPCF7_Submission::get_instance();
if ( ! $submission ) return;
$url = $submission->get_meta( 'url' );
if ( ! $url ) return;
$post_id = url_to_postid( $url );
if ( ! $post_id ) return;
$post_title = get_the_title( $post_id );
if ( function_exists( 'get_field' ) ) {
$download_url = get_field( 'pdf_link', $post_id );
} else {
$download_url = get_post_meta( $post_iOk chill, để mình gom hết lại thành **một hướng dẫn gọn – rõ – chạy được ngay**, từ lúc cài MailHog bằng Homebrew cho tới lúc WordPress test mail, cả case chạy bằng Docker hoặc chạy thuần trên máy.
---
# 🚀 HƯỚNG DẪN FULL: CÀI MAILHOG + SETUP WORDPRESS (DOCKER & NON-DOCKER)
## 🟩 PHẦN 1 — Cài MailHog bằng Homebrew
### 1. Cài đặt
```bash
brew install mailhog
```
### 2. Chạy MailHog
```bash
mailhog
```
### 3. Truy cập giao diện
* Web UI: **[http://localhost:8025](http://localhost:8025)**
* curl -fsSL https://cli.kiro.dev/install | bash/**
* @param {number[]} bits
* @return {boolean}
*/
var isOneBitCharacter = function(bits) {
// Start from the first bit
let i = 0;
// Traverse until the second-to-last bit
// (because the last bit is always 0, we want to see if it's consumed or not)
while (i < bits.length - 1) {
if (bits[i] === 1) {
// If we see a '1', it must form a two-bit character (10 or 11)
// So we skip TWO positions
i += 2;
} else {
/import os
from pathlib import Path
# -------------------------
# Define project name (main package)
# -------------------------
project_name = "src" # More descriptive than "src"
# -------------------------
# Define additional folders
# -------------------------
cicd_folder = "Github"
configs_folder = "configs"
data_folder = "data"
notebooks_folder = "notebooks"
static_css_folder = "static/css"
templates_folder = "templates"
tests_folder = "tests"
scripprint("Hello")
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain_classic.chains import ConversationChain
from langchain_classic.memory import ConversationBufferMemory
from langchain_classic.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_classic.schema import SystemMessage,HumanMessage
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY"
if not openai_api_key:
raise ValueError("O
## Messages
from langchain.core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
ToolMessage,
ToolMessageChunk,
FunctionMessage,
FunctionMessageChunk,
)
## Prompts
from langchain.core.prompts import (
PromptTemplate,
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
AIMessag🚀 Project Prompt: Build a Smart End-to-End Chatbot
🧩 Objective
Design and implement a robust, modular, and intelligent chatbot system using modern AI and web technologies. The chatbot should be capable of handling dynamic conversations, storing history, and providing a clean user interface.
🛠️ Tech Stack
🧠 Brain: LangChain + OpenAI (for LLM orchestration and prompt management)
⚙️ Backend: FastAPI (for serving the chatbot API)
💬 Frontend: Streamlit (for interactive chat UI)
🔒 Security: .import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load your dataset
df = pd.read_csv("your_data.csv") # Replace with your actual file
# Compute correlation matrix
corr_matrix = df.corr(numeric_only=True)
# Plot heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Heatmap")
plt.tight_layout()
plt.show()