contract DSNote {
event LogNote(
bytes4 indexed sig,
address indexed guy,
bytes32 indexed foo,
bytes32 indexed bar,
uint wad,
bytes fax
) anonymous;
modifier note {
bytes32 foo;
bytes32 bar;
assembly {
foo := calldataload(4)
bar := calldataload(36)
}
LogNote(msg.sig, msg.sender, foo, bar, msg.value, msg.data);
_;
}
}
contract ERC20 {
function totalSupply() constant returns (uint supply);
function balanceOf( address who ) constant returns (uint value);
function allowance( address owner, address spender ) constant returns (uint _allowance);
function transfer( address to, uint value) returns (bool ok);
function transferFrom( address from, address to, uint value) returns (bool ok);
function approve( address spender, uint value ) returns (bool ok);
event Transfer( address indexed from, address indexed to, uint value);
event Approval( address indexed owner, address indexed spender, uint value);
}
contract DSAuthority {
function canCall(
address src, address dst, bytes4 sig
) constant returns (bool);
}
contract DSAuthEvents {
event LogSetAuthority (address indexed authority);
event LogSetOwner (address indexed owner);
}
contract DSAuth is DSAuthEvents {
DSAuthority public authority;
address public owner;
function DSAuth() {
owner = msg.sender;
LogSetOwner(msg.sender);
}
function setOwner(address owner_)
auth
{
owner = owner_;
LogSetOwner(owner);
}
function setAuthority(DSAuthority authority_)
auth
{
authority = authority_;
LogSetAuthority(authority);
}
modifier auth {
assert(isAuthorized(msg.sender, msg.sig));
_;
}
modifier authorized(bytes4 sig) {
assert(isAuthorized(msg.sender, sig));
_;
}
function isAuthorized(address src, bytes4 sig) internal returns (bool) {
if (src == address(this)) {
return true;
} else if (src == owner) {
return true;
} else if (authority == DSAuthority(0)) {
return false;
} else {
return authority.canCall(src, this, sig);
}
}
function assert(bool x) internal {
if (!x) throw;
}
}
contract DSExec {
function tryExec( address target, bytes calldata, uint value)
internal
returns (bool call_ret)
{
return target.call.value(value)(calldata);
}
function exec( address target, bytes calldata, uint value)
internal
{
if(!tryExec(target, calldata, value)) {
throw;
}
}
// Convenience aliases
function exec( address t, bytes c )
internal
{
exec(t, c, 0);
}
function exec( address t, uint256 v )
internal
{
bytes memory c; exec(t, c, v);
}
function tryExec( address t, bytes c )
internal
returns (bool)
{
return tryExec(t, c, 0);
}
function tryExec( address t, uint256 v )
internal
returns (bool)
{
bytes memory c; return tryExec(t, c, v);
}
}
contract DSMath {
/*
standard uint256 functions
*/
function add(uint256 x, uint256 y) constant internal returns (uint256 z) {
assert((z = x + y) >= x);
}
function sub(uint256 x, uint256 y) constant internal returns (uint256 z) {
assert((z = x - y) <= x);
}
function mul(uint256 x, uint256 y) constant internal returns (uint256 z) {
assert((z = x * y) >= x);
}
function div(uint256 x, uint256 y) constant internal returns (uint256 z) {
z = x / y;
}
function min(uint256 x, uint256 y) constant internal returns (uint256 z) {
return x <= y ? x : y;
}
function max(uint256 x, uint256 y) constant internal returns (uint256 z) {
return x >= y ? x : y;
}
/*
uint128 functions (h is for half)
*/
function hadd(uint128 x, uint128 y) constant internal returns (uint128 z) {
assert((z = x + y) >= x);
}
function hsub(uint128 x, uint128 y) constant internal returns (uint128 z) {
assert((z = x - y) <= x);
}
function hmul(uint128 x, uint128 y) constant internal returns (uint128 z) {
assert((z = x * y) >= x);
}
function hdiv(uint128 x, uint128 y) constant internal returns (uint128 z) {
z = x / y;
}
function hmin(uint128 x, uint128 y) constant internal returns (uint128 z) {
return x <= y ? x : y;
}
function hmax(uint128 x, uint128 y) constant internal returns (uint128 z) {
return x >= y ? x : y;
}
/*
int256 functions
*/
function imin(int256 x, int256 y) constant internal returns (int256 z) {
return x <= y ? x : y;
}
function imax(int256 x, int256 y) constant internal returns (int256 z) {
return x >= y ? x : y;
}
/*
WAD math
*/
uint128 constant WAD = 10 ** 18;
function wadd(uint128 x, uint128 y) constant internal returns (uint128) {
return hadd(x, y);
}
function wsub(uint128 x, uint128 y) constant internal returns (uint128) {
return hsub(x, y);
}
function wmul(uint128 x, uint128 y) constant internal returns (uint128 z) {
z = cast((uint256(x) * y + WAD / 2) / WAD);
}
function wdiv(uint128 x, uint128 y) constant internal returns (uint128 z) {
z = cast((uint256(x) * WAD + y / 2) / y);
}
function wmin(uint128 x, uint128 y) constant internal returns (uint128) {
return hmin(x, y);
}
function wmax(uint128 x, uint128 y) constant internal returns (uint128) {
return hmax(x, y);
}
/*
RAY math
*/
uint128 constant RAY = 10 ** 27;
function radd(uint128 x, uint128 y) constant internal returns (uint128) {
return hadd(x, y);
}
function rsub(uint128 x, uint128 y) constant internal returns (uint128) {
return hsub(x, y);
}
function rmul(uint128 x, uint128 y) constant internal returns (uint128 z) {
z = cast((uint256(x) * y + RAY / 2) / RAY);
}
function rdiv(uint128 x, uint128 y) constant internal returns (uint128 z) {
z = cast((uint256(x) * RAY + y / 2) / y);
}
function rpow(uint128 x, uint64 n) constant internal returns (uint128 z) {
// This famous algorithm is called "exponentiation by squaring"
// and calculates x^n with x as fixed-point and n as regular unsigned.
//
// It's O(log n), instead of O(n) for naive repeated multiplication.
//
// These facts are why it works:
//
// If n is even, then x^n = (x^2)^(n/2).
// If n is odd, then x^n = x * x^(n-1),
// and applying the equation for even x gives
// x^n = x * (x^2)^((n-1) / 2).
//
// Also, EVM division is flooring and
// floor[(n-1) / 2] = floor[n / 2].
z = n % 2 != 0 ? x : RAY;
for (n /= 2; n != 0; n /= 2) {
x = rmul(x, x);
if (n % 2 != 0) {
z = rmul(z, x);
}
}
}
function rmin(uint128 x, uint128 y) constant internal returns (uint128) {
return hmin(x, y);
}
function rmax(uint128 x, uint128 y) constant internal returns (uint128) {
return hmax(x, y);
}
function cast(uint256 x) constant internal returns (uint128 z) {
assert((z = uint128(x)) == x);
}
}
contract DSStop is DSAuth, DSNote {
bool public stopped;
modifier stoppable {
assert (!stopped);
_;
}
function stop() auth note {
stopped = true;
}
function start() auth note {
stopped = false;
}
}
contract DSTokenBase is ERC20, DSMath {
uint256 _supply;
mapping (address => uint256) _balances;
mapping (address => mapping (address => uint256)) _approvals;
function DSTokenBase(uint256 supply) {
_balances[msg.sender] = supply;
_supply = supply;
}
function totalSupply() constant returns (uint256) {
return _supply;
}
function balanceOf(address src) constant returns (uint256) {
return _balances[src];
}
function allowance(address src, address guy) constant returns (uint256) {
return _approvals[src][guy];
}
function transfer(address dst, uint wad) returns (bool) {
assert(_balances[msg.sender] >= wad);
_balances[msg.sender] = sub(_balances[msg.sender], wad);
_balances[dst] = add(_balances[dst], wad);
Transfer(msg.sender, dst, wad);
return true;
}
function transferFrom(address src, address dst, uint wad) returns (bool) {
assert(_balances[src] >= wad);
assert(_approvals[src][msg.sender] >= wad);
_approvals[src][msg.sender] = sub(_approvals[src][msg.sender], wad);
_balances[src] = sub(_balances[src], wad);
_balances[dst] = add(_balances[dst], wad);
Transfer(src, dst, wad);
return true;
}
function approve(address guy, uint256 wad) returns (bool) {
_approvals[msg.sender][guy] = wad;
Approval(msg.sender, guy, wad);
return true;
}
}
contract DSToken is DSTokenBase(0), DSStop {
bytes32 public symbol;
uint256 public decimals = 18; // standard token precision. override to customize
function DSToken(bytes32 symbol_) {
symbol = symbol_;
}
function transfer(address dst, uint wad) stoppable note returns (bool) {
return super.transfer(dst, wad);
}
function transferFrom(
address src, address dst, uint wad
) stoppable note returns (bool) {
return super.transferFrom(src, dst, wad);
}
function approve(address guy, uint wad) stoppable note returns (bool) {
return super.approve(guy, wad);
}
function push(address dst, uint128 wad) returns (bool) {
return transfer(dst, wad);
}
function pull(address src, uint128 wad) returns (bool) {
return transferFrom(src, msg.sender, wad);
}
function mint(uint128 wad) auth stoppable note {
_balances[msg.sender] = add(_balances[msg.sender], wad);
_supply = add(_supply, wad);
}
function burn(uint128 wad) auth stoppable note {
_balances[msg.sender] = sub(_balances[msg.sender], wad);
_supply = sub(_supply, wad);
}
// Optional token name
bytes32 public name = "";
function setName(bytes32 name_) auth {
name = name_;
}
}
contract EOSSale is DSAuth, DSExec, DSMath {
DSToken public EOS; // The EOS token itself
uint128 public totalSupply; // Total EOS amount created
uint128 public foundersAllocation; // Amount given to founders
string public foundersKey; // Public key of founders
uint public openTime; // Time of window 0 opening
uint public createFirstDay; // Tokens sold in window 0
uint public startTime; // Time of window 1 opening
uint public numberOfDays; // Number of windows after 0
uint public createPerDay; // Tokens sold in each window
mapping (uint => uint) public dailyTotals;
mapping (uint => mapping (address => uint)) public userBuys;
mapping (uint => mapping (address => bool)) public claimed;
mapping (address => string) public keys;
event LogBuy (uint window, address user, uint amount);
event LogClaim (uint window, address user, uint amount);
event LogRegister (address user, string key);
event LogCollect (uint amount);
event LogFreeze ();
function EOSSale(
uint _numberOfDays,
uint128 _totalSupply,
uint _openTime,
uint _startTime,
uint128 _foundersAllocation,
string _foundersKey
) {
numberOfDays = _numberOfDays;
totalSupply = _totalSupply;
openTime = _openTime;
startTime = _startTime;
foundersAllocation = _foundersAllocation;
foundersKey = _foundersKey;
createFirstDay = wmul(totalSupply, 0.2 ether);
createPerDay = div(
sub(sub(totalSupply, foundersAllocation), createFirstDay),
numberOfDays
);
assert(numberOfDays > 0);
assert(totalSupply > foundersAllocation);
assert(openTime < startTime);
}
function initialize(DSToken eos) auth {
assert(address(EOS) == address(0));
assert(eos.owner() == address(this));
assert(eos.authority() == DSAuthority(0));
assert(eos.totalSupply() == 0);
EOS = eos;
EOS.mint(totalSupply);
// Address 0xb1 is provably non-transferrable
EOS.push(0xb1, foundersAllocation);
keys[0xb1] = foundersKey;
LogRegister(0xb1, foundersKey);
}
function time() constant returns (uint) {
return block.timestamp;
}
function today() constant returns (uint) {
return dayFor(time());
}
// Each window is 23 hours long so that end-of-window rotates
// around the clock for all timezones.
function dayFor(uint timestamp) constant returns (uint) {
return timestamp < startTime
? 0
: sub(timestamp, startTime) / 23 hours + 1;
}
function createOnDay(uint day) constant returns (uint) {
return day == 0 ? createFirstDay : createPerDay;
}
// This method provides the buyer some protections regarding which
// day the buy order is submitted and the maximum price prior to
// applying this payment that will be allowed.
function buyWithLimit(uint day, uint limit) payable {
assert(time() >= openTime && today() <= numberOfDays);
assert(msg.value >= 0.01 ether);
assert(day >= today());
assert(day <= numberOfDays);
userBuys[day][msg.sender] += msg.value;
dailyTotals[day] += msg.value;
if (limit != 0) {
assert(dailyTotals[day] <= limit);
}
LogBuy(day, msg.sender, msg.value);
}
function buy() payable {
buyWithLimit(today(), 0);
}
function () payable {
buy();
}
function claim(uint day) {
assert(today() > day);
if (claimed[day][msg.sender] || dailyTotals[day] == 0) {
return;
}
// This will have small rounding errors, but the token is
// going to be truncated to 8 decimal places or less anyway
// when launched on its own chain.
var dailyTotal = cast(dailyTotals[day]);
var userTotal = cast(userBuys[day][msg.sender]);
var price = wdiv(cast(createOnDay(day)), dailyTotal);
var reward = wmul(price, userTotal);
claimed[day][msg.sender] = true;
EOS.push(msg.sender, reward);
LogClaim(day, msg.sender, reward);
}
function claimAll() {
for (uint i = 0; i < today(); i++) {
claim(i);
}
}
// Value should be a public key. Read full key import policy.
// Manually registering requires a base58
// encoded using the STEEM, BTS, or EOS public key format.
function register(string key) {
assert(today() <= numberOfDays + 1);
assert(bytes(key).length <= 64);
keys[msg.sender] = key;
LogRegister(msg.sender, key);
}
// Crowdsale owners can collect ETH any number of times
function collect() auth {
assert(today() > 0); // Prevent recycling during window 0
exec(msg.sender, this.balance);
LogCollect(this.balance);
}
// Anyone can freeze the token 1 day after the sale ends
function freeze() {
assert(today() > numberOfDays + 1);
EOS.stop();
LogFreeze();
}
}