准备word2vec的数据集,batch类型 训练和测试
data_index = 0 #全局索引值,代表当前窗口最左侧在整个data词库中的位置
## generate batch from all samples
def generate_batch(batch_size, num_skips, skip_window): #num_skips代表每个中心词周围选取的context word数量,skip_window代
#表半个窗口大小
global data_index
assert batch_size % num_skips == 0#每个中心词取num_skips个context word,一个批次取中心词数量是batch_size//num_skips
assert num_skips <= 2 * skip_window#窗口大小2*skip_window+1,取词个数要小于窗口大小
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)#为什么是这种shape,因为后面用到的nce_loss规定需要是这种shape,否则也应该是batch的shape:[batch_size]
span = 2 * skip_window + 1#窗口大小2*skip_window+1
buffer = collections.deque(maxlen=span)#保存窗口中的值,用双端队列的进出来模拟窗口滑动
if data_index + span > len(data):
data_index = 0 #越界则回0
buffer.extend(data[data_index:data_index + span])
data_index += span
for i in range(batch_size // num_skips):
target = skip_window
targets_to_avoid = [skip_window] #避免重复取词
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1) #随机在中心词周围取词,不能重复取词
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
if data_index == len(data):
buffer[:] = data[:span]
data_index = span
else:
buffer.append(data[data_index])
data_index += 1 #窗口滑动,并改变data_index
data_index = (data_index + len(data) - span) % len(data) #需要更新data_index,设置data_index为全局变量是因为
#该方法会多次调用,每次调用会产生一个批次大小的数据量。作为输入和标签值。
return batch, labels
batch_size = 128
embedding_size = 128
skip_window = 1
num_skips = 2
valid_size = 16
valid_window = 100
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64
graph = tf.Graph()
## create graph
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
with tf.device('/cpu:0'):
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
#为了测试使用求得的embeddings,需要norm化。然后取一些原始words,找距离最近的即相似度最高的。
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)
init = tf.global_variables_initializer()
num_steps = 40001
## create session and begins to training
with tf.Session(graph=graph) as session:
init.run()
print('Initialized')
average_loss = 0
for step in range(num_steps):
batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
print('Average loss at step ', step, ': ', average_loss)
average_loss = 0
if step % 10000 == 0: #测试并使用embeddings
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()