Sucran
9/11/2017 - 8:39 AM

PyCaffe create the net

define-net.py --------defines a network for optional test and train, in which the param setting can pretrained the network by frozening some layers. define-layer-func.py -----defines an encapsulation of related layers. lenet.py ----- the most easy network definition.

from caffe import layers as L, params as P

def lenet(lmdb, batch_size):
    # our version of LeNet: a series of linear and simple nonlinear transformations
    n = caffe.NetSpec()
    
    n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
                             transform_param=dict(scale=1./255), ntop=2)
    
    n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
    n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
    n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.fc1 =   L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
    n.relu1 = L.ReLU(n.fc1, in_place=True)
    n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
    n.loss =  L.SoftmaxWithLoss(n.score, n.label)
    
    return n.to_proto()
with open('mnist/lenet_auto_train.prototxt', 'w') as f:
    f.write(str(lenet('mnist/mnist_train_lmdb', 64)))
    
with open('mnist/lenet_auto_test.prototxt', 'w') as f:
    f.write(str(lenet('mnist/mnist_test_lmdb', 100)))
from caffe import layers as L
from caffe import params as P

weight_param = dict(lr_mult=1, decay_mult=1)
bias_param   = dict(lr_mult=2, decay_mult=0)
learned_param = [weight_param, bias_param]

frozen_param = [dict(lr_mult=0)] * 2

def conv_relu(bottom, ks, nout, stride=1, pad=0, group=1,
              param=learned_param,
              weight_filler=dict(type='gaussian', std=0.01),
              bias_filler=dict(type='constant', value=0.1)):
    conv = L.Convolution(bottom, kernel_size=ks, stride=stride,
                         num_output=nout, pad=pad, group=group,
                         param=param, weight_filler=weight_filler,
                         bias_filler=bias_filler)
    return conv, L.ReLU(conv, in_place=True)

def fc_relu(bottom, nout, param=learned_param,
            weight_filler=dict(type='gaussian', std=0.005),
            bias_filler=dict(type='constant', value=0.1)):
    fc = L.InnerProduct(bottom, num_output=nout, param=param,
                        weight_filler=weight_filler,
                        bias_filler=bias_filler)
    return fc, L.ReLU(fc, in_place=True)

def max_pool(bottom, ks, stride=1):
    return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride)
def caffenet(data, label=None, train=True, num_classes=1000,
             classifier_name='fc8', learn_all=False):
    """Returns a NetSpec specifying CaffeNet, following the original proto text
       specification (./models/bvlc_reference_caffenet/train_val.prototxt)."""
    n = caffe.NetSpec()
    n.data = data
    ### pretrained setting!!!
    param = learned_param if learn_all else frozen_param
    n.conv1, n.relu1 = conv_relu(n.data, 11, 96, stride=4, param=param)
    n.pool1 = max_pool(n.relu1, 3, stride=2)
    n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75)
    n.conv2, n.relu2 = conv_relu(n.norm1, 5, 256, pad=2, group=2, param=param)
    n.pool2 = max_pool(n.relu2, 3, stride=2)
    n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75)
    n.conv3, n.relu3 = conv_relu(n.norm2, 3, 384, pad=1, param=param)
    n.conv4, n.relu4 = conv_relu(n.relu3, 3, 384, pad=1, group=2, param=param)
    n.conv5, n.relu5 = conv_relu(n.relu4, 3, 256, pad=1, group=2, param=param)
    n.pool5 = max_pool(n.relu5, 3, stride=2)
    n.fc6, n.relu6 = fc_relu(n.pool5, 4096, param=param)
    if train:
        n.drop6 = fc7input = L.Dropout(n.relu6, in_place=True)
    else:
        fc7input = n.relu6
    n.fc7, n.relu7 = fc_relu(fc7input, 4096, param=param)
    if train:
        n.drop7 = fc8input = L.Dropout(n.relu7, in_place=True)
    else:
        fc8input = n.relu7
    # always learn fc8 (param=learned_param)
    fc8 = L.InnerProduct(fc8input, num_output=num_classes, param=learned_param)
    # give fc8 the name specified by argument `classifier_name`
    n.__setattr__(classifier_name, fc8)
    if not train:
        n.probs = L.Softmax(fc8)
    if label is not None:
        n.label = label
        n.loss = L.SoftmaxWithLoss(fc8, n.label)
        n.acc = L.Accuracy(fc8, n.label)
    # write the net to a temporary file and return its filename