# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
class SlopeBasedEquityMomentumAlphaModel(AlphaModel):
def __init__(self,
shortTermMomentumWindow = 60,
longTermMomentumWindow = 90,
minimumMomentum = 60,
indexAverageWindow = 100,
resolution = Resolution.Daily):
self.shortTermMomentumWindow = shortTermMomentumWindow
self.longTermMomentumWindow = longTermMomentumWindow
self.minimumMomentum = minimumMomentum
self.indexAverageWindow = indexAverageWindow
self.resolution = resolution
self.symbolData = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.symbolDataBySymbol = {}
self.month = None
def slope(ts):
x = np.arange(len(ts))
log_ts = np.log(ts)
slope, intercept, r_value, p_value, std_err = stats.linregress(x, log_ts)
annualized_slope = (np.power(np.exp(slope), 250) - 1) * 100
return annualized_slope * (r_value ** 2)
def Update(self, algorithm, data):
insights = []
## If it has already run Update this month, then return nothing
## You can replace month with week if you want weekly
if algorithm.Time.month == self.month:
return []
algorithm.Log('Update() called: ' + str(algorithm.Time))
## Update self.month so that it won't do anything in Update until a month has gone by
self.month = algorithm.Time.month
## Local dictionary of rolling windows
shortTermBars = {}
longTermBars = {}
## Add current bar to rolling window
for symbol, symbolData in self.symbolDataBySymbol.items():
if not data.Bars.ContainsKey(symbol):
## If there is no new bar, i.e. dividend being paid, then forward fill rolling window
if symbolData.LongTermBars.Samples > 0:
symbolData.UpdateRollingWindows(symbolData.LongTermBars[0])
elif symbolData.ShortTermBars.Samples > 0:
symbolData.UpdateRollingWindows(symbolData.ShortTermBars[0])
else:
continue
else:
symbolData.UpdateRollingWindows(data.Bars[symbol])
shortTermBars[symbol] = symbolData.ShortTermBars
longTermBars[symbol] = symbolData.LongTermBars
## Insight code here
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for security in changes.AddedSecurities:
if security.Symbol not in self.symbolDataBySymbol.keys():
symbolData = SymbolData(security.Symbol, self.shortTermMomentumWindow, self.longTermMomentumWindow)
self.symbolDataBySymbol[security.Symbol] = symbolData
for security in changes.RemovedSecurities:
self.symbolDataBySymbol.pop(security.Symbol)
class SymbolData:
def __init__(self, symbol, shortTermMomentumWindow, longTermMomentumWindow):
self.Symbol = symbol
self.shortTermRollingWindow = RollingWindow[TradeBar](shortTermMomentumWindow)
self.longTermRollingWindow = RollingWindow[TradeBar](longTermMomentumWindow)
def UpdateRollingWindows(self, bar):
self.shortTermRollingWindow.Add(bar)
self.longTermRollingWindow.Add(bar)
@property
def ShortTermBars(self):
return self.shortTermRollingWindow
@property
def LongTermBars(self):
return self.longTermRollingWindow