Algorithm and Data Structures With Ruby - #4 Merge Sort
def mergeArrays(arr,start_1,end_1,start_2,end_2)
temp = Array.new(end_1 + end_2 - start_1 - start_2 + 2)
index_1 = start_1 # Marks the index in the first sub-array, which needs to be put into the temporary array next
index_2 = start_2 # Marks the index in the second sub-array, which needs to be put into the temporary array next
index = 0 # Mark the index in the Temporary array which is being filled
while ( index_1 <= end_1 ) || ( index_2 <= end_2 )
if ( index_1 <= end_1 ) && ( index_2 <= end_2 ) && (arr[index_1] < arr[index_2] )
temp[index] = arr[index_1]
index += 1
index_1 += 1
elsif ( index_2 <= end_2 )
temp[index] = arr[index_2]
index += 1
index_2 += 1
else
temp[index] = arr[index_1]
index += 1
index_1 += 1
end
end
(0..(index-1)).each{ |x|
arr[x + start_1] = temp[x]
}
end
def mergeSort(arr,startIndex,endIndex)
return if endIndex <= startIndex
length = endIndex - startIndex + 1
mergeSort(arr,startIndex,startIndex + length/2 -1)
mergeSort(arr,startIndex + length/2 , endIndex)
mergeArrays(arr,startIndex,startIndex + length/2 -1,startIndex + length/2 , endIndex)
end
original_array=[2,19,5,4,3,14,2]
puts "Sorted Array Using Merge Sort:"
mergeSort(original_array,0,original_array.length - 1)
p original_array
##Output:
## Sorted Array Using Merge Sort:
## [2, 2, 3, 4, 5, 14, 19]
#Example 2
def merge_sort(lst)
return lst if lst.length <= 1
mid = lst.length / 2
left = merge_sort(lst[0..mid - 1])
right = merge_sort(lst[mid..lst.length])
merge(left, right)
end
def merge(left, right)
result = []; i = j = 0;
while i < left.size and j < right.size
if left[i] <= right[j]
result << left[i]; i+=1;
else
result << right[j]; j+=1;
end
end
while i<left.size do
result << left[i]; i+=1;
end
while j<right.size
result << right[j]; j+=1;
end
result
end
#test
p merge_sort [4,3,6,1,2,7,8,5,9,0] #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]