Creates a Voronoi diagram with cell polygons using scipy's Delaunay triangulation (scipy >= 0.9)
from __future__ import division
import collections
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay, KDTree
# an adaptation of https://stackoverflow.com/a/15783581/60982
# using ideas from https://stackoverflow.com/a/9471601/60982
def voronoi(P):
'''
Returns a list of all edges of the voronoi diagram for the given input points.
'''
delauny = Delaunay(P)
triangles = delauny.points[delauny.vertices]
circum_centers = np.array([triangle_csc(tri) for tri in triangles])
long_lines_endpoints = []
lineIndices = []
for i, triangle in enumerate(triangles):
circum_center = circum_centers[i]
for j, neighbor in enumerate(delauny.neighbors[i]):
if neighbor != -1:
lineIndices.append((i, neighbor))
else:
ps = triangle[(j+1)%3] - triangle[(j-1)%3]
ps = np.array((ps[1], -ps[0]))
middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
di = middle - triangle[j]
ps /= np.linalg.norm(ps)
di /= np.linalg.norm(di)
if np.dot(di, ps) < 0.0:
ps *= -1000.0
else:
ps *= 1000.0
long_lines_endpoints.append(circum_center + ps)
lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))
vertices = np.vstack((circum_centers, long_lines_endpoints))
# filter out any duplicate lines
lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
lineIndicesUnique = sorted(set(lineIndicesTupled))
return vertices, lineIndicesUnique
def triangle_csc(pts):
rows, cols = pts.shape
A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
[np.ones((1, rows)), np.zeros((1, 1))]])
b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
x = np.linalg.solve(A,b)
bary_coords = x[:-1]
return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)
def voronoi_cell_lines(points, vertices, lineIndices):
'''
Returns a mapping from a voronoi cell to its edges.
:param points: shape (m,2)
:param vertices: shape (n,2)
:param lineIndices: shape (o,2)
:rtype: dict point index -> list of shape (n,2) with vertex indices
'''
kd = KDTree(points)
cells = collections.defaultdict(list)
for i1,i2 in lineIndices:
v1,v2 = vertices[i1], vertices[i2]
mid = (v1+v2)/2
_, (p1Idx,p2Idx) = kd.query(mid, 2)
cells[p1Idx].append((i1,i2))
cells[p2Idx].append((i1,i2))
return cells
def voronoi_polygons(cells):
'''
Transforms cell edges into polygons.
:param cells: as returned from voronoi_cell_lines
:rtype: dict point index -> list of vertex indices which form a polygon
'''
# first, close the outer cells
for pIdx,lineIndices_ in cells.items():
dangling_lines = []
for i1,i2 in lineIndices_:
connections = list(filter(lambda i12_: (i1,i2) != (i12_[0],i12_[1]) and
(i1==i12_[0] or i1==i12_[1] or i2==i12_[0] or i2==i12_[1]),
lineIndices_))
assert 1 <= len(connections) <= 2
if len(connections) == 1:
dangling_lines.append((i1,i2))
assert len(dangling_lines) in [0,2]
if len(dangling_lines) == 2:
(i11,i12), (i21,i22) = dangling_lines
# determine which line ends are unconnected
connected = list(filter(lambda i12_: (i12_[0],i12_[1]) != (i11,i12) and (i12_[0] == i11 or i12_[1] == i11), lineIndices_))
i11Unconnected = len(connected) == 0
connected = list(filter(lambda i12_: (i12_[0],i12_[1]) != (i21,i22) and (i12_[0] == i21 or i12_[1] == i21), lineIndices_))
i21Unconnected = len(connected) == 0
startIdx = i11 if i11Unconnected else i12
endIdx = i21 if i21Unconnected else i22
cells[pIdx].append((startIdx, endIdx))
# then, form polygons by storing vertex indices in (counter-)clockwise order
polys = dict()
for pIdx,lineIndices_ in cells.items():
# get a directed graph which contains both directions and arbitrarily follow one of both
directedGraph = lineIndices_ + [(i2,i1) for (i1,i2) in lineIndices_]
directedGraphMap = collections.defaultdict(list)
for (i1,i2) in directedGraph:
directedGraphMap[i1].append(i2)
orderedEdges = []
currentEdge = directedGraph[0]
while len(orderedEdges) < len(lineIndices_):
i1 = currentEdge[1]
i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
nextEdge = (i1, i2)
orderedEdges.append(nextEdge)
currentEdge = nextEdge
polys[pIdx] = [i1 for (i1,i2) in orderedEdges]
return polys
def polygons(points):
'''
Returns the voronoi polygon for each input point.
:param points: shape (n,2)
:rtype: list of n polygons where each polygon is an array of vertices
'''
vertices, lineIndices = voronoi(points)
cells = voronoi_cell_lines(points, vertices, lineIndices)
polys = voronoi_polygons(cells)
polylist = []
for i in range(len(points)):
poly = vertices[np.asarray(polys[i])]
polylist.append(poly)
return polylist
if __name__ == '__main__':
P = np.random.random((100,2))
fig = plt.figure(figsize=(4.5,4.5))
axes = plt.subplot(1,1,1)
plt.axis([-0.05,1.05,-0.05,1.05])
polys = polygons(P)
for poly in polys:
p = matplotlib.patches.Polygon(poly, facecolor=np.random.rand(3,1))
axes.add_patch(p)
X,Y = P[:,0],P[:,1]
plt.scatter(X, Y, marker='.', zorder=2)
plt.axis([-0.05,1.05,-0.05,1.05])
plt.show()