syrte
2/4/2014 - 1:49 PM

Creates a Voronoi diagram with cell polygons using scipy's Delaunay triangulation (scipy >= 0.9)

Creates a Voronoi diagram with cell polygons using scipy's Delaunay triangulation (scipy >= 0.9)

from __future__ import division
import collections
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay, KDTree

# an adaptation of https://stackoverflow.com/a/15783581/60982
# using ideas from https://stackoverflow.com/a/9471601/60982

def voronoi(P):
    '''
    Returns a list of all edges of the voronoi diagram for the given input points.
    '''
    delauny = Delaunay(P)
    triangles = delauny.points[delauny.vertices]

    circum_centers = np.array([triangle_csc(tri) for tri in triangles])
    long_lines_endpoints = []

    lineIndices = []
    for i, triangle in enumerate(triangles):
        circum_center = circum_centers[i]
        for j, neighbor in enumerate(delauny.neighbors[i]):
            if neighbor != -1:
                lineIndices.append((i, neighbor))
            else:     
                ps = triangle[(j+1)%3] - triangle[(j-1)%3]
                ps = np.array((ps[1], -ps[0]))

                middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
                di = middle - triangle[j]

                ps /= np.linalg.norm(ps)
                di /= np.linalg.norm(di)

                if np.dot(di, ps) < 0.0:
                    ps *= -1000.0
                else:
                    ps *= 1000.0
                    
                long_lines_endpoints.append(circum_center + ps)                
                lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))

    vertices = np.vstack((circum_centers, long_lines_endpoints))
    
    # filter out any duplicate lines
    lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
    lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
    lineIndicesUnique = sorted(set(lineIndicesTupled))
    
    return vertices, lineIndicesUnique

def triangle_csc(pts):
    rows, cols = pts.shape

    A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
                 [np.ones((1, rows)), np.zeros((1, 1))]])

    b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
    x = np.linalg.solve(A,b)
    bary_coords = x[:-1]
    return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)

def voronoi_cell_lines(points, vertices, lineIndices):
    '''
    Returns a mapping from a voronoi cell to its edges.
     
    :param points: shape (m,2)
    :param vertices: shape (n,2)
    :param lineIndices: shape (o,2)
    :rtype: dict point index -> list of shape (n,2) with vertex indices 
    '''
    kd = KDTree(points)
    
    cells = collections.defaultdict(list)
    for i1,i2 in lineIndices:
        v1,v2 = vertices[i1], vertices[i2]
        mid = (v1+v2)/2
        _, (p1Idx,p2Idx) = kd.query(mid, 2)
        cells[p1Idx].append((i1,i2))
        cells[p2Idx].append((i1,i2))

    return cells

def voronoi_polygons(cells):
    '''
    Transforms cell edges into polygons.
    
    :param cells: as returned from voronoi_cell_lines
    :rtype: dict point index -> list of vertex indices which form a polygon 
    '''
    
    # first, close the outer cells
    for pIdx,lineIndices_ in cells.items():
        dangling_lines = []
        for i1,i2 in lineIndices_:
            connections = list(filter(lambda i12_: (i1,i2) != (i12_[0],i12_[1]) and 
                                      (i1==i12_[0] or i1==i12_[1] or i2==i12_[0] or i2==i12_[1]), 
                                      lineIndices_))
            assert 1 <= len(connections) <= 2
            if len(connections) == 1:
                dangling_lines.append((i1,i2))
        assert len(dangling_lines) in [0,2]
        if len(dangling_lines) == 2:
            (i11,i12), (i21,i22) = dangling_lines
            
            # determine which line ends are unconnected
            connected = list(filter(lambda i12_: (i12_[0],i12_[1]) != (i11,i12) and (i12_[0] == i11 or i12_[1] == i11), lineIndices_))
            i11Unconnected = len(connected) == 0
            
            connected = list(filter(lambda i12_: (i12_[0],i12_[1]) != (i21,i22) and (i12_[0] == i21 or i12_[1] == i21), lineIndices_))
            i21Unconnected = len(connected) == 0
            
            startIdx = i11 if i11Unconnected else i12
            endIdx = i21 if i21Unconnected else i22
            
            cells[pIdx].append((startIdx, endIdx))
    
    # then, form polygons by storing vertex indices in (counter-)clockwise order
    polys = dict()
    for pIdx,lineIndices_ in cells.items():
        # get a directed graph which contains both directions and arbitrarily follow one of both
        directedGraph = lineIndices_ + [(i2,i1) for (i1,i2) in lineIndices_]
        directedGraphMap = collections.defaultdict(list)
        for (i1,i2) in directedGraph:
            directedGraphMap[i1].append(i2)
        orderedEdges = []
        currentEdge = directedGraph[0]
        while len(orderedEdges) < len(lineIndices_):
            i1 = currentEdge[1]
            i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
            nextEdge = (i1, i2)
            orderedEdges.append(nextEdge)
            currentEdge = nextEdge
        
        polys[pIdx] = [i1 for (i1,i2) in orderedEdges]
    
    return polys

def polygons(points):
    '''
    Returns the voronoi polygon for each input point.
    
    :param points: shape (n,2)
    :rtype: list of n polygons where each polygon is an array of vertices
    '''
    vertices, lineIndices = voronoi(points)
    cells = voronoi_cell_lines(points, vertices, lineIndices)
    polys = voronoi_polygons(cells)
    polylist = []
    for i in range(len(points)):
        poly = vertices[np.asarray(polys[i])]
        polylist.append(poly)
    return polylist
    
if __name__ == '__main__':
    P = np.random.random((100,2))

    fig = plt.figure(figsize=(4.5,4.5))
    axes = plt.subplot(1,1,1)

    plt.axis([-0.05,1.05,-0.05,1.05])

    polys = polygons(P)
        
    for poly in polys:
        p = matplotlib.patches.Polygon(poly, facecolor=np.random.rand(3,1))
        axes.add_patch(p)

    X,Y = P[:,0],P[:,1]
    plt.scatter(X, Y, marker='.', zorder=2)

    plt.axis([-0.05,1.05,-0.05,1.05])
    plt.show()