# -*- coding: utf-8 -*-
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but without any warranty; without even the implied warranty of
# merchantability or fitness for a particular purpose. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
"name": "Export Paper Model",
"author": "Addam Dominec",
"version": (0, 9),
"blender": (2, 70, 0),
"location": "File > Export > Paper Model",
"warning": "",
"description": "Export printable net of the active mesh",
"category": "Import-Export",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Import-Export/Paper_Model",
"tracker_url": "https://developer.blender.org/T38441"
}
#### TODO:
# sanitize the constructors so that they don't edit their parent object
# rename verts -> vertices, edge.vect -> edge.vector
# SVG object doesn't need a 'pure_net' argument in constructor
# remember selected objects before baking, except selected to active
# islands with default names should be excluded while matching
# add 'estimated number of pages' to the export UI
# profile QuickSweepline vs. BruteSweepline with/without blist: for which nets is it faster?
# rotate islands to minimize area -- and change that only if necessary to fill the page size
# Sticker.vertices should be of type Vector
# check conflicts in island naming and either:
# * append a number to the conflicting names or
# * enumerate faces uniquely within all islands of the same name (requires a check that both label and abbr. equals)
"""
Additional links:
e-mail: adominec {at} gmail {dot} com
"""
import bpy
import bl_operators
import bgl
import mathutils as M
from re import compile as re_compile
from itertools import chain
from math import pi
try:
import os.path as os_path
except ImportError:
os_path = None
try:
from blist import blist
except ImportError:
blist = list
default_priority_effect = {
'CONVEX': 0.5,
'CONCAVE': 1,
'LENGTH': -0.05
}
def first_letters(text):
"""Iterator over the first letter of each word"""
for match in first_letters.pattern.finditer(text):
yield text[match.start()]
first_letters.pattern = re_compile("(?<!\w)[\w]")
def is_upsidedown_wrong(name):
"""Tell if the string would get a different meaning if written upside down"""
chars = set(name)
mistakable = set("69NZMWpbqd")
rotatable = set("80oOxXIl").union(mistakable)
return chars.issubset(rotatable) and not chars.isdisjoint(mistakable)
def pairs(sequence):
"""Generate consecutive pairs throughout the given sequence; at last, it gives elements last, first."""
i = iter(sequence)
previous = first = next(i)
for this in i:
yield previous, this
previous = this
yield this, first
def argmax_pair(array, key):
"""Find an (unordered) pair of indices that maximize the given function"""
l = len(array)
mi, mj, m = None, None, None
for i in range(l):
for j in range(i+1, l):
k = key(array[i], array[j])
if not m or k > m:
mi, mj, m = i, j, k
return mi, mj
def fitting_matrix(v1, v2):
"""Get a matrix that rotates v1 to the same direction as v2"""
return (1 / v1.length_squared) * M.Matrix((
(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y),
(v1.x*v2.y - v1.y*v2.x, v1.x*v2.x + v1.y*v2.y)))
def z_up_matrix(n):
"""Get a rotation matrix that aligns given vector upwards."""
b = n.xy.length
l = n.length
if b > 0:
return M.Matrix((
(n.x*n.z/(b*l), n.y*n.z/(b*l), -b/l),
(-n.y/b, n.x/b, 0),
(0, 0, 0)
))
else:
# no need for rotation
return M.Matrix((
(1, 0, 0),
(0, (-1 if n.z < 0 else 1), 0),
(0, 0, 0)
))
def create_blank_image(image_name, dimensions, alpha=1):
"""Create a new image and assign white color to all its pixels"""
image_name = image_name[:64]
width, height = int(dimensions.x), int(dimensions.y)
image = bpy.data.images.new(image_name, width, height, alpha=True)
if image.users > 0:
raise UnfoldError("There is something wrong with the material of the model. "
"Please report this on the BlenderArtists forum. Export failed.")
image.pixels = [1, 1, 1, alpha] * (width * height)
image.file_format = 'PNG'
return image
class UnfoldError(ValueError):
pass
class Unfolder:
def __init__(self, ob):
self.ob = ob
self.mesh = Mesh(ob.data, ob.matrix_world)
self.tex = None
def prepare(self, cage_size=None, create_uvmap=False, mark_seams=False, priority_effect=default_priority_effect, scale=1):
"""Create the islands of the net"""
self.mesh.generate_cuts(cage_size / scale if cage_size else None, priority_effect)
self.mesh.finalize_islands()
self.mesh.enumerate_islands()
if create_uvmap:
self.tex = self.mesh.save_uv()
if mark_seams:
self.mesh.mark_cuts()
def copy_island_names(self, island_list):
"""Copy island label and abbreviation from the best matching island in the list"""
orig_list = {(frozenset(face.id for face in item.faces), item.label, item.abbreviation) for item in island_list}
for island in self.mesh.islands:
islfaces = {uvface.face.index for uvface in island.faces}
match = max(orig_list, key=lambda item: islfaces.intersection(item[0]))
island.label = match[1]
island.abbreviation = match[2]
def save(self, properties):
"""Export the document"""
# Note about scale: input is direcly in blender length
# Mesh.scale_islands multiplies everything by a user-defined ratio
# SVG object multiplies everything by 1000 (output in millimeters)
filepath = properties.filepath
if filepath.lower().endswith((".svg", ".png")):
filepath = filepath[0:-4]
# page size in meters
page_size = M.Vector((properties.output_size_x, properties.output_size_y))
# printable area size in meters
printable_size = page_size - 2 * properties.output_margin * M.Vector((1, 1))
unit_scale = bpy.context.scene.unit_settings.scale_length
ppm = properties.output_dpi * 100 / 2.54 # pixels per meter
# after this call, all dimensions will be in meters
self.mesh.scale_islands(unit_scale/properties.scale)
if properties.do_create_stickers:
self.mesh.generate_stickers(properties.sticker_width, properties.do_create_numbers)
elif properties.do_create_numbers:
self.mesh.generate_numbers_alone(properties.sticker_width)
text_height = properties.sticker_width if (properties.do_create_numbers and len(self.mesh.islands) > 1) else 0
aspect_ratio = printable_size.x / printable_size.y
# finalizing islands will scale everything so that the page height is 1
# title height must be somewhat larger that text size, glyphs go below the baseline
self.mesh.finalize_islands(title_height=text_height * 1.2)
self.mesh.fit_islands(cage_size=printable_size)
if properties.output_type != 'NONE':
# bake an image and save it as a PNG to disk or into memory
use_separate_images = properties.image_packing in ('ISLAND_LINK', 'ISLAND_EMBED')
tex = self.mesh.save_uv(cage_size=printable_size, separate_image=use_separate_images, tex=self.tex)
if not tex:
raise UnfoldError("The mesh has no UV Map slots left. Either delete a UV Map or export the net without textures.")
rd = bpy.context.scene.render
recall = rd.bake_type, rd.use_bake_to_vertex_color, rd.use_bake_selected_to_active, rd.bake_distance, rd.bake_bias, rd.bake_margin, rd.use_bake_clear
rd.bake_type = 'TEXTURE' if properties.output_type == 'TEXTURE' else 'FULL'
rd.use_bake_selected_to_active = (properties.output_type == 'SELECTED_TO_ACTIVE')
rd.bake_margin, rd.bake_distance, rd.bake_bias, rd.use_bake_to_vertex_color, rd.use_bake_clear = 0, 0, 0.001, False, False
if properties.image_packing == 'PAGE_LINK':
self.mesh.save_image(tex, printable_size * ppm, filepath)
elif properties.image_packing == 'ISLAND_LINK':
self.mesh.save_separate_images(tex, printable_size.y * ppm, filepath)
elif properties.image_packing == 'ISLAND_EMBED':
self.mesh.save_separate_images(tex, printable_size.y * ppm, filepath, do_embed=True)
# revoke settings
rd.bake_type, rd.use_bake_to_vertex_color, rd.use_bake_selected_to_active, rd.bake_distance, rd.bake_bias, rd.bake_margin, rd.use_bake_clear = recall
if not properties.do_create_uvmap:
tex.active = True
bpy.ops.mesh.uv_texture_remove()
svg = SVG(page_size, properties.style, (properties.output_type == 'NONE'))
svg.do_create_stickers = properties.do_create_stickers
svg.margin = properties.output_margin
svg.text_size = properties.sticker_width
svg.write(self.mesh, filepath)
class Mesh:
"""Wrapper for Bpy Mesh"""
def __init__(self, mesh, matrix):
self.verts = dict()
self.edges = dict()
self.edges_by_verts_indices = dict()
self.faces = dict()
self.islands = list()
self.data = mesh
self.pages = list()
for bpy_vertex in mesh.vertices:
self.verts[bpy_vertex.index] = Vertex(bpy_vertex, matrix)
for bpy_edge in mesh.edges:
edge = Edge(bpy_edge, self, matrix)
self.edges[bpy_edge.index] = edge
self.edges_by_verts_indices[(edge.va.index, edge.vb.index)] = edge
self.edges_by_verts_indices[(edge.vb.index, edge.va.index)] = edge
for bpy_face in mesh.polygons:
face = Face(bpy_face, self)
self.faces[bpy_face.index] = face
for edge in self.edges.values():
edge.choose_main_faces()
if edge.main_faces:
edge.calculate_angle()
def generate_cuts(self, page_size, priority_effect):
"""Cut the mesh so that it can be unfolded to a flat net."""
# warning: this constructor modifies its parameter (face)
islands = {Island(face) for face in self.faces.values()}
# check for edges that are cut permanently
edges = [edge for edge in self.edges.values() if not edge.force_cut and len(edge.faces) > 1]
if edges:
average_length = sum(edge.length for edge in edges) / len(edges)
for edge in edges:
edge.generate_priority(priority_effect, average_length)
edges.sort(reverse=False, key=lambda edge: edge.priority)
for edge in edges:
if edge.length == 0:
continue
face_a, face_b = edge.main_faces
island_a, island_b = face_a.uvface.island, face_b.uvface.island
if island_a is not island_b:
if len(island_b.faces) > len(island_a.faces):
island_a, island_b = island_b, island_a
if island_a.join(island_b, edge, size_limit=page_size):
islands.remove(island_b)
self.islands = sorted(islands, reverse=True, key=lambda island: len(island.faces))
for edge in self.edges.values():
# some edges did not know until now whether their angle is convex or concave
if edge.main_faces and (edge.main_faces[0].uvface.flipped or edge.main_faces[1].uvface.flipped):
edge.calculate_angle()
# ensure that the order of faces corresponds to the order of uvedges
if edge.main_faces:
reordered = [None, None]
for uvedge in edge.uvedges:
try:
index = edge.main_faces.index(uvedge.uvface.face)
reordered[index] = uvedge
except ValueError:
reordered.append(uvedge)
edge.uvedges = reordered
for island in self.islands:
# if the normals are ambiguous, flip them so that there are more convex edges than concave ones
if any(uvface.flipped for uvface in island.faces):
island_edges = {uvedge.edge for uvedge in island.edges if not uvedge.edge.is_cut(uvedge.uvface.face)}
balance = sum((+1 if edge.angle > 0 else -1) for edge in island_edges)
if balance < 0:
island.is_inside_out = True
# construct a linked list from each island's boundary
# uvedge.neighbor_right is clockwise = forward = via uvedge.vb if not uvface.flipped
neighbor_lookup, conflicts = dict(), dict()
for uvedge in island.boundary:
uvvertex = uvedge.va if uvedge.uvface.flipped else uvedge.vb
if uvvertex not in neighbor_lookup:
neighbor_lookup[uvvertex] = uvedge
else:
if uvvertex not in conflicts:
conflicts[uvvertex] = [neighbor_lookup[uvvertex], uvedge]
else:
conflicts[uvvertex].append(uvedge)
for uvedge in island.boundary:
uvvertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
if uvvertex not in conflicts:
# using the 'get' method so as to handle single-connected vertices properly
uvedge.neighbor_right = neighbor_lookup.get(uvvertex, uvedge)
uvedge.neighbor_right.neighbor_left = uvedge
else:
conflicts[uvvertex].append(uvedge)
# resolve merged vertices with more boundaries crossing
def direction_to_float(vector):
return (1 - vector.x/vector.length) if vector.y > 0 else (vector.x/vector.length - 1)
for uvvertex, uvedges in conflicts.items():
def is_inwards(uvedge):
return uvedge.uvface.flipped == (uvedge.va is uvvertex)
def uvedge_sortkey(uvedge):
if is_inwards(uvedge):
return direction_to_float(uvedge.va.co - uvedge.vb.co)
else:
return direction_to_float(uvedge.vb.co - uvedge.va.co)
uvedges.sort(key=uvedge_sortkey)
for right, left in zip(uvedges[:-1:2], uvedges[1::2]) if is_inwards(uvedges[0]) else zip([uvedges[-1]] + uvedges[1::2], uvedges[:-1:2]):
left.neighbor_right = right
right.neighbor_left = left
return True
def mark_cuts(self):
"""Mark cut edges in the original mesh so that the user can see"""
for bpy_edge in self.data.edges:
edge = self.edges[bpy_edge.index]
bpy_edge.use_seam = len(edge.uvedges) > 1 and edge.is_main_cut
def generate_stickers(self, default_width, do_create_numbers=True):
"""Add sticker faces where they are needed."""
def uvedge_priority(uvedge):
"""Retuns whether it is a good idea to stick something on this edge's face"""
# TODO: it should take into account overlaps with faces and with other stickers
return uvedge.uvface.face.area / sum((vb.co - va.co).length for (va, vb) in pairs(uvedge.uvface.verts))
def add_sticker(uvedge, index, target_island):
uvedge.sticker = Sticker(uvedge, default_width, index, target_island)
uvedge.island.add_marker(uvedge.sticker)
for edge in self.edges.values():
if edge.is_main_cut and len(edge.uvedges) >= 2 and edge.vect.length_squared > 0:
uvedge_a, uvedge_b = edge.uvedges[:2]
if uvedge_priority(uvedge_a) < uvedge_priority(uvedge_b):
uvedge_a, uvedge_b = uvedge_b, uvedge_a
target_island = uvedge_a.island
left_edge, right_edge = uvedge_a.neighbor_left.edge, uvedge_a.neighbor_right.edge
if do_create_numbers:
for uvedge in [uvedge_b] + edge.uvedges[2:]:
if ((uvedge.neighbor_left.edge is not right_edge or uvedge.neighbor_right.edge is not left_edge) and
uvedge not in (uvedge_a.neighbor_left, uvedge_a.neighbor_right)):
# it will not be clear to see that these uvedges should be sticked together
# So, create an arrow and put the index on all stickers
target_island.sticker_numbering += 1
index = str(target_island.sticker_numbering)
if is_upsidedown_wrong(index):
index += "."
target_island.add_marker(Arrow(uvedge_a, default_width, index))
break
else:
# if all uvedges to be sticked are easy to see, create no numbers
index = None
else:
index = None
add_sticker(uvedge_b, index, target_island)
elif len(edge.uvedges) > 2:
index = None
target_island = edge.uvedges[0].island
if len(edge.uvedges) > 2:
for uvedge in edge.uvedges[2:]:
add_sticker(uvedge, index, target_island)
def generate_numbers_alone(self, size):
global_numbering = 0
for edge in self.edges.values():
if edge.is_main_cut and len(edge.uvedges) >= 2:
global_numbering += 1
index = str(global_numbering)
if is_upsidedown_wrong(index):
index += "."
for uvedge in edge.uvedges:
uvedge.island.add_marker(NumberAlone(uvedge, index, size))
def enumerate_islands(self):
for num, island in enumerate(self.islands, 1):
island.number = num
island.generate_label()
def scale_islands(self, scale):
for island in self.islands:
for point in chain((vertex.co for vertex in island.verts), island.fake_verts):
point *= scale
def finalize_islands(self, title_height=0):
for island in self.islands:
if title_height:
island.title = "[{}] {}".format(island.abbreviation, island.label)
points = list(vertex.co for vertex in island.verts) + island.fake_verts
angle = M.geometry.box_fit_2d(points)
rot = M.Matrix.Rotation(angle, 2)
for point in points:
# note: we need an in-place operation, and Vector.rotate() seems to work for 3d vectors only
point[:] = rot * point
for marker in island.markers:
marker.rot = rot * marker.rot
bottom_left = M.Vector((min(v.x for v in points), min(v.y for v in points) - title_height))
for point in points:
point -= bottom_left
island.bounding_box = M.Vector((max(v.x for v in points), max(v.y for v in points)))
def largest_island_ratio(self, page_size):
return max(max(island.bounding_box.x / page_size.x, island.bounding_box.y / page_size.y) for island in self.islands)
def fit_islands(self, cage_size):
"""Move islands so that they fit onto pages, based on their bounding boxes"""
def try_emplace(island, page_islands, cage_size, stops_x, stops_y, occupied_cache):
"""Tries to put island to each pair from stops_x, stops_y
and checks if it overlaps with any islands present on the page.
Returns True and positions the given island on success."""
bbox_x, bbox_y = island.bounding_box.xy
for x in stops_x:
if x + bbox_x > cage_size.x:
continue
for y in stops_y:
if y + bbox_y > cage_size.y or (x, y) in occupied_cache:
continue
for i, obstacle in enumerate(page_islands):
# if this obstacle overlaps with the island, try another stop
if (x + bbox_x > obstacle.pos.x and
obstacle.pos.x + obstacle.bounding_box.x > x and
y + bbox_y > obstacle.pos.y and
obstacle.pos.y + obstacle.bounding_box.y > y):
if x >= obstacle.pos.x and y >= obstacle.pos.y:
occupied_cache.add((x, y))
# just a stupid heuristic to make subsequent searches faster
if i > 0:
page_islands[1:i+1] = page_islands[:i]
page_islands[0] = obstacle
break
else:
# if no obstacle called break, this position is okay
island.pos.xy = x, y
page_islands.append(island)
stops_x.append(x + bbox_x)
stops_y.append(y + bbox_y)
return True
return False
def drop_portion(stops, border, divisor):
stops.sort()
# distance from left neighbor to the right one, excluding the first stop
distances = [right - left for left, right in zip(stops, chain(stops[2:], [border]))]
quantile = sorted(distances)[len(distances) // divisor]
return [stop for stop, distance in zip(stops, chain([quantile], distances)) if distance >= quantile]
if any(island.bounding_box.x > cage_size.x or island.bounding_box.y > cage_size.y for island in self.islands):
raise UnfoldError("An island is too big to fit onto page of the given size. "
"Either downscale the model or find and split that island manually.\n"
"Export failed, sorry.")
# sort islands by their diagonal... just a guess
remaining_islands = sorted(self.islands, reverse=True, key=lambda island: island.bounding_box.length_squared)
page_num = 1
while remaining_islands:
# create a new page and try to fit as many islands onto it as possible
page = Page(page_num)
page_num += 1
occupied_cache = set()
stops_x, stops_y = [0], [0]
for island in remaining_islands:
try_emplace(island, page.islands, cage_size, stops_x, stops_y, occupied_cache)
# if overwhelmed with stops, drop a quarter of them
if len(stops_x)**2 > 4 * len(self.islands) + 100:
stops_x = drop_portion(stops_x, cage_size.x, 4)
stops_y = drop_portion(stops_y, cage_size.y, 4)
remaining_islands = [island for island in remaining_islands if island not in page.islands]
self.pages.append(page)
def save_uv(self, cage_size=M.Vector((1, 1)), separate_image=False, tex=None):
# TODO: mode switching should be handled by higher-level code
bpy.ops.object.mode_set()
# note: assuming that the active object's data is self.mesh
if not tex:
tex = self.data.uv_textures.new()
if not tex:
return None
tex.name = "Unfolded"
tex.active = True
# TODO: this is somewhat dirty, but I do not see a nicer way in the API
loop = self.data.uv_layers[self.data.uv_layers.active_index]
if separate_image:
for island in self.islands:
island.save_uv_separate(loop)
else:
for island in self.islands:
island.save_uv(loop, cage_size)
return tex
def save_image(self, tex, page_size_pixels: M.Vector, filename):
texfaces = tex.data
# omitting this causes a "Circular reference in texture stack" error
for island in self.islands:
for uvface in island.faces:
texfaces[uvface.face.index].image = None
for page in self.pages:
image = create_blank_image("{} {} Unfolded".format(self.data.name[:14], page.name), page_size_pixels, alpha=1)
image.filepath_raw = page.image_path = "{}_{}.png".format(filename, page.name)
for island in page.islands:
for uvface in island.faces:
texfaces[uvface.face.index].image = image
try:
bpy.ops.object.bake_image()
image.save()
finally:
for island in page.islands:
for uvface in island.faces:
texfaces[uvface.face.index].image = None
image.user_clear()
bpy.data.images.remove(image)
def save_separate_images(self, tex, scale, filepath, do_embed=False):
assert(os_path) # check the module was imported
if do_embed:
import tempfile
import base64
else:
from os import mkdir
image_dir = filepath
try:
mkdir(image_dir)
except OSError:
# image_dir already existed
pass
texfaces = tex.data
# omitting these 3 lines causes a "Circular reference in texture stack" error
for island in self.islands:
for uvface in island.faces:
texfaces[uvface.face.index].image = None
for i, island in enumerate(self.islands, 1):
if do_embed:
tempfile_manager = tempfile.NamedTemporaryFile("rb", suffix=".png")
image_path = tempfile_manager.name
image_name = os_path.basename(tempfile_manager.name)
# note: image_path exists by now and Blender will overwrite it;
# we will read later from the same file
else:
image_path = os_path.join(image_dir, "island{}.png".format(i))
image_name = "{} isl{}".format(self.data.name[:15], i)
image = create_blank_image(image_name, island.bounding_box * scale, alpha=0)
image.filepath_raw = image_path
for uvface in island.faces:
texfaces[uvface.face.index].image = image
try:
bpy.ops.object.bake_image()
image.save()
finally:
for uvface in island.faces:
texfaces[uvface.face.index].image = None
image.user_clear()
bpy.data.images.remove(image)
if do_embed:
with tempfile_manager as imgfile:
island.embedded_image = base64.encodebytes(imgfile.read()).decode('ascii')
else:
island.image_path = image_path
class Vertex:
"""BPy Vertex wrapper"""
__slots__ = ('index', 'co', 'edges', 'uvs')
def __init__(self, bpy_vertex, matrix):
self.index = bpy_vertex.index
self.co = matrix * bpy_vertex.co
self.edges = list()
self.uvs = list()
def __hash__(self):
return hash(self.index)
def __eq__(self, other):
return self.index == other.index
class Edge:
"""Wrapper for BPy Edge"""
__slots__ = ('va', 'vb', 'faces', 'main_faces', 'uvedges',
'vect', 'length', 'angle',
'is_main_cut', 'force_cut', 'priority', 'freestyle')
def __init__(self, edge, mesh, matrix=1):
self.va = mesh.verts[edge.vertices[0]]
self.vb = mesh.verts[edge.vertices[1]]
self.vect = self.vb.co - self.va.co
self.length = self.vect.length
self.faces = list()
# if self.main_faces is set, then self.uvedges[:2] must correspond to self.main_faces, in their order
# this constraint is assured at the time of finishing mesh.generate_cuts
self.uvedges = list()
self.force_cut = edge.use_seam # such edges will always be cut
self.main_faces = None # two faces that may be connected in the island
# is_main_cut defines whether the two main faces are connected
# all the others will be assumed to be cut
self.is_main_cut = True
self.priority = None
self.angle = None
self.freestyle = getattr(edge, "use_freestyle_mark", False) # freestyle edges will be highlighted
self.va.edges.append(self) #FIXME: editing foreign attribute
self.vb.edges.append(self) #FIXME: editing foreign attribute
def choose_main_faces(self):
"""Choose two main faces that might get connected in an island"""
if len(self.faces) == 2:
self.main_faces = self.faces
elif len(self.faces) > 2:
# find (with brute force) the pair of indices whose faces have the most similar normals
i, j = argmax_pair(self.faces, key=lambda a, b: abs(a.normal.dot(b.normal)))
self.main_faces = [self.faces[i], self.faces[j]]
def calculate_angle(self):
"""Calculate the angle between the main faces"""
face_a, face_b = self.main_faces
if face_a.normal.length_squared == 0 or face_b.normal.length_squared == 0:
self.angle = -3 # just a very sharp angle
return
# correction if normals are flipped
a_is_clockwise = ((face_a.verts.index(self.va) - face_a.verts.index(self.vb)) % len(face_a.verts) == 1)
b_is_clockwise = ((face_b.verts.index(self.va) - face_b.verts.index(self.vb)) % len(face_b.verts) == 1)
is_equal_flip = True
if face_a.uvface and face_b.uvface:
a_is_clockwise ^= face_a.uvface.flipped
b_is_clockwise ^= face_b.uvface.flipped
is_equal_flip = (face_a.uvface.flipped == face_b.uvface.flipped)
# TODO: maybe this need not be true in _really_ ugly cases: assert(a_is_clockwise != b_is_clockwise)
if a_is_clockwise != b_is_clockwise:
if (a_is_clockwise == (face_b.normal.cross(face_a.normal).dot(self.vect) > 0)) == is_equal_flip:
# the angle is convex
self.angle = face_a.normal.angle(face_b.normal)
else:
# the angle is concave
self.angle = -face_a.normal.angle(face_b.normal)
else:
# normals are flipped, so we know nothing
# so let us assume the angle be convex
self.angle = face_a.normal.angle(-face_b.normal)
def generate_priority(self, priority_effect, average_length):
"""Calculate the priority value for cutting"""
angle = self.angle
if angle > 0:
self.priority = priority_effect['CONVEX'] * angle / pi
else:
self.priority = priority_effect['CONCAVE'] * (-angle) / pi
self.priority += (self.length / average_length) * priority_effect['LENGTH']
def is_cut(self, face):
"""Return False if this edge will the given face to another one in the resulting net
(useful for edges with more than two faces connected)"""
# Return whether there is a cut between the two main faces
if self.main_faces and face in self.main_faces:
return self.is_main_cut
# All other faces (third and more) are automatically treated as cut
else:
return True
def other_uvedge(self, this):
"""Get an uvedge of this edge that is not the given one
causes an IndexError if case of less than two adjacent edges"""
return self.uvedges[1] if this is self.uvedges[0] else self.uvedges[0]
class Face:
"""Wrapper for BPy Face"""
__slots__ = ('index', 'edges', 'verts', 'uvface',
'loop_start', 'area', 'normal')
def __init__(self, bpy_face, mesh, matrix=1):
self.index = bpy_face.index
self.edges = list()
self.verts = [mesh.verts[i] for i in bpy_face.vertices]
self.loop_start = bpy_face.loop_start
self.area = bpy_face.area
self.uvface = None
# calculate the face normal explicitly
if len(self.verts) == 3:
# normal of a triangle can be calculated directly
self.normal = (self.verts[1].co - self.verts[0].co).cross(self.verts[2].co - self.verts[0].co).normalized()
else:
# Newell's method
nor = M.Vector((0, 0, 0))
for a, b in pairs(self.verts):
p, m = a.co + b.co, a.co - b.co
nor.x, nor.y, nor.z = nor.x + m.y*p.z, nor.y + m.z*p.x, nor.z + m.x*p.y
self.normal = nor.normalized()
for verts_indices in bpy_face.edge_keys:
edge = mesh.edges_by_verts_indices[verts_indices]
self.edges.append(edge)
edge.faces.append(self) #FIXME: editing foreign attribute
def is_twisted(self):
if len(self.verts) > 3:
center = sum(vertex.co for vertex in self.verts) / len(self.verts)
plane_d = center.dot(self.normal)
diameter = max((center - vertex.co).length for vertex in self.verts)
for vertex in self.verts:
# check coplanarity
if abs(vertex.co.dot(self.normal) - plane_d) > diameter * 0.01:
return True
return False
def __hash__(self):
return hash(self.index)
class Island:
"""Part of the net to be exported"""
__slots__ = ('faces', 'edges', 'verts', 'fake_verts', 'uvverts_by_id', 'boundary', 'markers',
'pos', 'bounding_box',
'image_path', 'embedded_image',
'number', 'label', 'abbreviation', 'title',
'has_safe_geometry', 'is_inside_out',
'sticker_numbering')
def __init__(self, face=None):
"""Create an Island from a single Face"""
self.faces = list()
self.edges = set()
self.verts = set()
self.fake_verts = list()
self.markers = list()
self.label = None
self.abbreviation = None
self.title = None
self.pos = M.Vector((0, 0))
self.image_path = None
self.embedded_image = None
self.is_inside_out = False # swaps concave <-> convex edges
self.has_safe_geometry = True
self.sticker_numbering = 0
if face:
uvface = UVFace(face, self)
self.verts.update(uvface.verts)
self.edges.update(uvface.edges)
self.faces.append(uvface)
# speedup for Island.join
self.uvverts_by_id = {uvvertex.vertex.index: [uvvertex] for uvvertex in self.verts}
# UVEdges on the boundary
self.boundary = list(self.edges)
def join(self, other, edge: Edge, size_limit=None, epsilon=1e-6) -> bool:
"""
Try to join other island on given edge
Returns False if they would overlap
"""
class Intersection(Exception):
pass
class GeometryError(Exception):
pass
def is_below(self, other, correct_geometry=True):
if self is other:
return False
if self.top < other.bottom:
return True
if other.top < self.bottom:
return False
if self.max.tup <= other.min.tup:
return True
if other.max.tup <= self.min.tup:
return False
self_vector = self.max.co - self.min.co
min_to_min = other.min.co - self.min.co
cross_b1 = self_vector.cross(min_to_min)
cross_b2 = self_vector.cross(other.max.co - self.min.co)
if cross_b2 < cross_b1:
cross_b1, cross_b2 = cross_b2, cross_b1
if cross_b2 > 0 and (cross_b1 > 0 or (cross_b1 == 0 and not self.is_uvface_upwards())):
return True
if cross_b1 < 0 and (cross_b2 < 0 or (cross_b2 == 0 and self.is_uvface_upwards())):
return False
other_vector = other.max.co - other.min.co
cross_a1 = other_vector.cross(-min_to_min)
cross_a2 = other_vector.cross(self.max.co - other.min.co)
if cross_a2 < cross_a1:
cross_a1, cross_a2 = cross_a2, cross_a1
if cross_a2 > 0 and (cross_a1 > 0 or (cross_a1 == 0 and not other.is_uvface_upwards())):
return False
if cross_a1 < 0 and (cross_a2 < 0 or (cross_a2 == 0 and other.is_uvface_upwards())):
return True
if cross_a1 == cross_b1 == cross_a2 == cross_b2 == 0:
if correct_geometry:
raise GeometryError
elif self.is_uvface_upwards() == other.is_uvface_upwards():
raise Intersection
return False
if self.min.tup == other.min.tup or self.max.tup == other.max.tup:
return cross_a2 > cross_b2
raise Intersection
class QuickSweepline:
"""Efficient sweepline based on binary search, checking neighbors only"""
def __init__(self):
self.children = blist()
def add(self, item, cmp=is_below):
low, high = 0, len(self.children)
while low < high:
mid = (low + high) // 2
if cmp(self.children[mid], item):
low = mid + 1
else:
high = mid
self.children.insert(low, item)
def remove(self, item, cmp=is_below):
index = self.children.index(item)
self.children.pop(index)
if index > 0 and index < len(self.children):
# check for intersection
if cmp(self.children[index], self.children[index-1]):
raise GeometryError
class BruteSweepline:
"""Safe sweepline which checks all its members pairwise"""
def __init__(self):
self.children = set()
self.last_min = None, []
self.last_max = None, []
def add(self, item, cmp=is_below):
for child in self.children:
if child.min is not item.min and child.max is not item.max:
cmp(item, child, False)
self.children.add(item)
def remove(self, item):
self.children.remove(item)
def sweep(sweepline, segments):
"""Sweep across the segments and raise an exception if necessary"""
# careful, 'segments' may be a use-once iterator
events_add = sorted(segments, reverse=True, key=lambda uvedge: uvedge.min.tup)
events_remove = sorted(events_add, reverse=True, key=lambda uvedge: uvedge.max.tup)
while events_remove:
while events_add and events_add[-1].min.tup <= events_remove[-1].max.tup:
sweepline.add(events_add.pop())
sweepline.remove(events_remove.pop())
def root_find(value, tree):
"""Find the root of a given value in a forest-like dictionary
also updates the dictionary using path compression"""
parent, relink = tree.get(value), list()
while parent is not None:
relink.append(value)
value, parent = parent, tree.get(parent)
tree.update(dict.fromkeys(relink, value))
return value
def slope_from(position):
def slope(uvedge):
vec = (uvedge.vb.co - uvedge.va.co) if uvedge.va.tup == position else (uvedge.va.co - uvedge.vb.co)
return (vec.y / vec.length + 1) if ((vec.x, vec.y) > (0, 0)) else (-1 - vec.y / vec.length)
return slope
# find edge in other and in self
for uvedge in edge.uvedges:
if uvedge.uvface.face in uvedge.edge.main_faces:
if uvedge.uvface.island is self and uvedge in self.boundary:
uvedge_a = uvedge
elif uvedge.uvface.island is other and uvedge in other.boundary:
uvedge_b = uvedge
else:
return False
# check if vertices and normals are aligned correctly
verts_flipped = uvedge_b.va.vertex is uvedge_a.va.vertex
flipped = verts_flipped ^ uvedge_a.uvface.flipped ^ uvedge_b.uvface.flipped
# determine rotation
# NOTE: if the edges differ in length, the matrix will involve uniform scaling.
# Such situation may occur in the case of twisted n-gons
first_b, second_b = (uvedge_b.va, uvedge_b.vb) if not verts_flipped else (uvedge_b.vb, uvedge_b.va)
if not flipped:
rot = fitting_matrix(first_b.co - second_b.co, uvedge_a.vb.co - uvedge_a.va.co)
else:
flip = M.Matrix(((-1, 0), (0, 1)))
rot = fitting_matrix(flip * (first_b.co - second_b.co), uvedge_a.vb.co - uvedge_a.va.co) * flip
trans = uvedge_a.vb.co - rot * first_b.co
# extract and transform island_b's boundary
phantoms = {uvvertex: UVVertex(rot*uvvertex.co + trans, uvvertex.vertex) for uvvertex in other.verts}
# check the size of the resulting island
if size_limit:
# first check: bounding box
bbox_width = max(max(seg.max.co.x for seg in self.boundary), max(vertex.co.x for vertex in phantoms)) - min(min(seg.min.co.x for seg in self.boundary), min(vertex.co.x for vertex in phantoms))
bbox_height = max(max(seg.top for seg in self.boundary), max(vertex.co.y for vertex in phantoms)) - min(min(seg.bottom for seg in self.boundary), min(vertex.co.y for vertex in phantoms))
if min(bbox_width, bbox_height)**2 > size_limit.x**2 + size_limit.y**2:
return False
if (bbox_width > size_limit.x or bbox_height > size_limit.y) and (bbox_height > size_limit.x or bbox_width > size_limit.y):
# further checks (TODO!)
# for the time being, just throw this piece away
return False
distance_limit = edge.vect.length_squared * epsilon
# try and merge UVVertices closer than sqrt(distance_limit)
merged_uvedges = set()
merged_uvedge_pairs = list()
# merge all uvvertices that are close enough using a union-find structure
# uvvertices will be merged only in cases other->self and self->self
# all resulting groups are merged together to a uvvertex of self
is_merged_mine = False
shared_vertices = self.uvverts_by_id.keys() & other.uvverts_by_id.keys()
for vertex_id in shared_vertices:
uvs = self.uvverts_by_id[vertex_id] + other.uvverts_by_id[vertex_id]
len_mine = len(self.uvverts_by_id[vertex_id])
merged = dict()
for i, a in enumerate(uvs[:len_mine]):
i = root_find(i, merged)
for j, b in enumerate(uvs[i+1:], i+1):
b = b if j < len_mine else phantoms[b]
j = root_find(j, merged)
if i == j:
continue
i, j = (j, i) if j < i else (i, j)
if (a.co - b.co).length_squared < distance_limit:
merged[j] = i
for source, target in merged.items():
target = root_find(target, merged)
phantoms[uvs[source]] = uvs[target]
is_merged_mine |= (source < len_mine) # remember that a vertex of this island has been merged
for uvedge in (chain(self.boundary, other.boundary) if is_merged_mine else other.boundary):
for partner in uvedge.edge.uvedges:
if partner is not uvedge:
paired_a, paired_b = phantoms.get(partner.vb, partner.vb), phantoms.get(partner.va, partner.va)
if (partner.uvface.flipped ^ flipped) != uvedge.uvface.flipped:
paired_a, paired_b = paired_b, paired_a
if phantoms.get(uvedge.va, uvedge.va) is paired_a and phantoms.get(uvedge.vb, uvedge.vb) is paired_b:
# if these two edges will get merged, add them both to the set
merged_uvedges.update((uvedge, partner))
merged_uvedge_pairs.append((uvedge, partner))
break
if uvedge_b not in merged_uvedges:
raise UnfoldError("Export failed. Please report this error, including the model if you can.")
boundary_other = [PhantomUVEdge(phantoms[uvedge.va], phantoms[uvedge.vb], flipped ^ uvedge.uvface.flipped)
for uvedge in other.boundary if uvedge not in merged_uvedges]
# TODO: if is_merged_mine, it might make sense to create a similar list from self.boundary as well
incidence = {vertex.tup for vertex in phantoms.values()}.intersection(vertex.tup for vertex in self.verts)
incidence = {position: list() for position in incidence} # from now on, 'incidence' is a dict
for uvedge in chain(boundary_other, self.boundary):
if uvedge.va.co == uvedge.vb.co:
continue
for vertex in (uvedge.va, uvedge.vb):
site = incidence.get(vertex.tup)
if site is not None:
site.append(uvedge)
for position, segments in incidence.items():
if len(segments) <= 2:
continue
segments.sort(key=slope_from(position))
for right, left in pairs(segments):
is_left_ccw = left.is_uvface_upwards() ^ (left.max.tup == position)
is_right_ccw = right.is_uvface_upwards() ^ (right.max.tup == position)
if is_right_ccw and not is_left_ccw and type(right) is not type(left) and right not in merged_uvedges and left not in merged_uvedges:
return False
if (not is_right_ccw and right not in merged_uvedges) ^ (is_left_ccw and left not in merged_uvedges):
return False
# check for self-intersections
try:
try:
sweepline = QuickSweepline() if self.has_safe_geometry and other.has_safe_geometry else BruteSweepline()
sweep(sweepline, (uvedge for uvedge in chain(boundary_other, self.boundary)))
self.has_safe_geometry &= other.has_safe_geometry
except GeometryError:
sweep(BruteSweepline(), (uvedge for uvedge in chain(boundary_other, self.boundary)))
self.has_safe_geometry = False
except Intersection:
return False
# mark all edges that connect the islands as not cut
for uvedge in merged_uvedges:
uvedge.edge.is_main_cut = False
# include all trasformed vertices as mine
self.verts.update(phantoms.values())
# update the uvverts_by_id dictionary
for source, target in phantoms.items():
present = self.uvverts_by_id.get(target.vertex.index)
if not present:
self.uvverts_by_id[target.vertex.index] = [target]
else:
# emulation of set behavior... sorry, it is faster
if source in present:
present.remove(source)
if target not in present:
present.append(target)
# re-link uvedges and uvfaces to their transformed locations
for uvedge in other.edges:
uvedge.island = self
uvedge.va = phantoms[uvedge.va]
uvedge.vb = phantoms[uvedge.vb]
uvedge.update()
if is_merged_mine:
for uvedge in self.edges:
uvedge.va = phantoms.get(uvedge.va, uvedge.va)
uvedge.vb = phantoms.get(uvedge.vb, uvedge.vb)
self.edges.update(other.edges)
for uvface in other.faces:
uvface.island = self
uvface.verts = [phantoms[uvvertex] for uvvertex in uvface.verts]
uvface.uvvertex_by_id = {index: phantoms[uvvertex]
for index, uvvertex in uvface.uvvertex_by_id.items()}
uvface.flipped ^= flipped
if is_merged_mine:
# there may be own uvvertices that need to be replaced by phantoms
for uvface in self.faces:
if any(uvvertex in phantoms for uvvertex in uvface.verts):
uvface.verts = [phantoms.get(uvvertex, uvvertex) for uvvertex in uvface.verts]
uvface.uvvertex_by_id = {index: phantoms.get(uvvertex, uvvertex)
for index, uvvertex in uvface.uvvertex_by_id.items()}
self.faces.extend(other.faces)
self.boundary = [uvedge for uvedge in
chain(self.boundary, other.boundary) if uvedge not in merged_uvedges]
for uvedge, partner in merged_uvedge_pairs:
# make sure that main faces are the ones actually merged (this changes nothing in most cases)
uvedge.edge.main_faces[:] = uvedge.uvface.face, partner.uvface.face
# everything seems to be OK
return True
def add_marker(self, marker):
self.fake_verts.extend(marker.bounds)
self.markers.append(marker)
def generate_label(self, label=None, abbreviation=None):
"""Assign a name to this island automatically"""
abbr = abbreviation or self.abbreviation or str(self.number)
# TODO: dots should be added in the last instant when outputting any text
if is_upsidedown_wrong(abbr):
abbr += "."
self.label = label or self.label or "Island {}".format(self.number)
self.abbreviation = abbr
def save_uv(self, tex, cage_size):
"""Save UV Coordinates of all UVFaces to a given UV texture
tex: UV Texture layer to use (BPy MeshUVLoopLayer struct)
page_size: size of the page in pixels (vector)"""
texface = tex.data
for uvface in self.faces:
for i, uvvertex in enumerate(uvface.verts):
uv = uvvertex.co + self.pos
texface[uvface.face.loop_start + i].uv[0] = uv.x / cage_size.x
texface[uvface.face.loop_start + i].uv[1] = uv.y / cage_size.y
def save_uv_separate(self, tex):
"""Save UV Coordinates of all UVFaces to a given UV texture, spanning from 0 to 1
tex: UV Texture layer to use (BPy MeshUVLoopLayer struct)
page_size: size of the page in pixels (vector)"""
texface = tex.data
scale_x, scale_y = 1 / self.bounding_box.x, 1 / self.bounding_box.y
for uvface in self.faces:
for i, uvvertex in enumerate(uvface.verts):
texface[uvface.face.loop_start + i].uv[0] = uvvertex.co.x * scale_x
texface[uvface.face.loop_start + i].uv[1] = uvvertex.co.y * scale_y
class Page:
"""Container for several Islands"""
__slots__ = ('islands', 'name', 'image_path')
def __init__(self, num=1):
self.islands = list()
self.name = "page{}".format(num)
self.image_path = None
class UVVertex:
"""Vertex in 2D"""
__slots__ = ('co', 'vertex', 'tup')
def __init__(self, vector, vertex=None):
self.co = vector.xy
self.vertex = vertex
self.tup = tuple(self.co)
def __repr__(self):
if self.vertex:
return "UV {} [{:.3f}, {:.3f}]".format(self.vertex.index, self.co.x, self.co.y)
else:
return "UV * [{:.3f}, {:.3f}]".format(self.co.x, self.co.y)
class UVEdge:
"""Edge in 2D"""
# Every UVEdge is attached to only one UVFace
# UVEdges are doubled as needed because they both have to point clockwise around their faces
__slots__ = ('va', 'vb', 'island', 'uvface', 'edge',
'min', 'max', 'bottom', 'top',
'neighbor_left', 'neighbor_right', 'sticker')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, island: Island, uvface, edge):
self.va = vertex1
self.vb = vertex2
self.update()
self.island = island
self.uvface = uvface
self.sticker = None
self.edge = edge
def update(self):
"""Update data if UVVertices have moved"""
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return (self.va.tup < self.vb.tup) ^ self.uvface.flipped
def __repr__(self):
return "({0.va} - {0.vb})".format(self)
class PhantomUVEdge:
"""Temporary 2D Segment for calculations"""
__slots__ = ('va', 'vb', 'min', 'max', 'bottom', 'top')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, flip):
self.va, self.vb = (vertex2, vertex1) if flip else (vertex1, vertex2)
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return self.va.tup < self.vb.tup
def __repr__(self):
return "[{0.va} - {0.vb}]".format(self)
class UVFace:
"""Face in 2D"""
__slots__ = ('verts', 'edges', 'face', 'island', 'flipped', 'uvvertex_by_id')
def __init__(self, face: Face, island: Island):
"""Creace an UVFace from a Face and a fixed edge.
face: Face to take coordinates from
island: Island to register itself in
fixed_edge: Edge to connect to (that already has UV coordinates)"""
self.verts = list()
self.face = face
face.uvface = self
self.island = island
self.flipped = False # a flipped UVFace has edges clockwise
rot = z_up_matrix(face.normal)
self.uvvertex_by_id = dict() # link vertex id -> UVVertex
for vertex in face.verts:
uvvertex = UVVertex(rot * vertex.co, vertex)
self.verts.append(uvvertex)
self.uvvertex_by_id[vertex.index] = uvvertex
self.edges = list()
edge_by_verts = dict()
for edge in face.edges:
edge_by_verts[(edge.va.index, edge.vb.index)] = edge
edge_by_verts[(edge.vb.index, edge.va.index)] = edge
for va, vb in pairs(self.verts):
edge = edge_by_verts[(va.vertex.index, vb.vertex.index)]
uvedge = UVEdge(va, vb, island, self, edge)
self.edges.append(uvedge)
edge.uvedges.append(uvedge) #FIXME: editing foreign attribute
class Arrow:
"""Mark in the document: an arrow denoting the number of the edge it points to"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, size, index):
self.text = str(index)
edge = (uvedge.vb.co - uvedge.va.co) if not uvedge.uvface.flipped else (uvedge.va.co - uvedge.vb.co)
self.center = (uvedge.va.co + uvedge.vb.co) / 2
self.size = size
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
tangent = edge.normalized()
normal = M.Vector((tangent.y, -tangent.x))
self.bounds = [self.center, self.center + (1.2*normal + tangent)*size, self.center + (1.2*normal - tangent)*size]
class Sticker:
"""Mark in the document: sticker tab"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'width', 'vertices')
def __init__(self, uvedge, default_width=0.005, index=None, target_island=None):
"""Sticker is directly attached to the given UVEdge"""
first_vertex, second_vertex = (uvedge.va, uvedge.vb) if not uvedge.uvface.flipped else (uvedge.vb, uvedge.va)
edge = first_vertex.co - second_vertex.co
sticker_width = min(default_width, edge.length / 2)
other = uvedge.edge.other_uvedge(uvedge) # This is the other uvedge - the sticking target
other_first, other_second = (other.va, other.vb) if not other.uvface.flipped else (other.vb, other.va)
other_edge = other_second.co - other_first.co
# angle a is at vertex uvedge.va, b is at uvedge.vb
cos_a = cos_b = 0.5
sin_a = sin_b = 0.75**0.5
# len_a is length of the side adjacent to vertex a, len_b likewise
len_a = len_b = sticker_width / sin_a
# fix overlaps with the most often neighbour - its sticking target
if first_vertex == other_second:
cos_a = max(cos_a, (edge*other_edge) / (edge.length**2)) # angles between pi/3 and 0
sin_a = abs(1 - cos_a**2)**0.5
len_b = min(len_a, (edge.length*sin_a) / (sin_a*cos_b + sin_b*cos_a))
len_a = 0 if sin_a == 0 else min(sticker_width / sin_a, (edge.length - len_b*cos_b) / cos_a)
elif second_vertex == other_first:
cos_b = max(cos_b, (edge*other_edge) / (edge.length**2)) # angles between pi/3 and 0
sin_b = abs(1 - cos_b**2)**0.5
len_a = min(len_a, (edge.length*sin_b) / (sin_a*cos_b + sin_b*cos_a))
len_b = 0 if sin_b == 0 else min(sticker_width / sin_b, (edge.length - len_a*cos_a) / cos_b)
v3 = UVVertex(second_vertex.co + M.Matrix(((cos_b, -sin_b), (sin_b, cos_b))) * edge * len_b / edge.length)
v4 = UVVertex(first_vertex.co + M.Matrix(((-cos_a, -sin_a), (sin_a, -cos_a))) * edge * len_a / edge.length)
if v3.co != v4.co:
self.vertices = [second_vertex, v3, v4, first_vertex]
else:
self.vertices = [second_vertex, v3, first_vertex]
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.width = sticker_width * 0.9
if index and target_island is not uvedge.island:
self.text = "{}:{}".format(target_island.abbreviation, index)
else:
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 + self.rot*M.Vector((0, self.width*0.2))
self.bounds = [v3.co, v4.co, self.center] if v3.co != v4.co else [v3.co, self.center]
class NumberAlone:
"""Mark in the document: numbering inside the island denoting edges to be sticked"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, index, default_size=0.005):
"""Sticker is directly attached to the given UVEdge"""
edge = (uvedge.va.co - uvedge.vb.co) if not uvedge.uvface.flipped else (uvedge.vb.co - uvedge.va.co)
self.size = default_size
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 - self.rot*M.Vector((0, self.size*1.2))
self.bounds = [self.center]
class SVG:
"""Simple SVG exporter"""
def __init__(self, page_size: M.Vector, style, pure_net=True):
"""Initialize document settings.
page_size: document dimensions in meters
pure_net: if True, do not use image"""
self.page_size = page_size
self.pure_net = pure_net
self.style = style
self.margin = 0
self.text_size = 12
def format_vertex(self, vector, pos=M.Vector((0, 0))):
"""Return a string with both coordinates of the given vertex."""
x, y = vector + pos
return "{:.6f} {:.6f}".format((x + self.margin) * 1000, (self.page_size.y - y - self.margin) * 1000)
def write(self, mesh, filename):
"""Write data to a file given by its name."""
line_through = " L ".join # used for formatting of SVG path data
rows = "\n".join
dl = ["{:.2f}".format(length * self.style.line_width * 1000) for length in (2, 5, 10)]
format_style = {'SOLID': "none", 'DOT': "{0},{1}".format(*dl), 'DASH': "{1},{2}".format(*dl), 'LONGDASH': "{2},{1}".format(*dl), 'DASHDOT': "{2},{1},{0},{1}".format(*dl)}
def format_color(vec):
return "#{:02x}{:02x}{:02x}".format(round(vec[0] * 255), round(vec[1] * 255), round(vec[2] * 255))
def format_matrix(matrix):
return " ".join("{:.6f}".format(cell) for column in matrix for cell in column)
def path_convert(string, relto=os_path.dirname(filename)):
assert(os_path) # check the module was imported
string = os_path.relpath(string, relto)
if os_path.sep != '/':
string = string.replace(os_path.sep, '/')
return string
styleargs = {name: format_color(getattr(self.style, name)) for name in
("outer_color", "outbg_color", "convex_color", "concave_color", "freestyle_color",
"inbg_color", "sticker_fill", "text_color")}
styleargs.update({name: format_style[getattr(self.style, name)] for name in
("outer_style", "convex_style", "concave_style", "freestyle_style")})
styleargs.update({name: getattr(self.style, attr)[3] for name, attr in
(("outer_alpha", "outer_color"), ("outbg_alpha", "outbg_color"),
("convex_alpha", "convex_color"), ("concave_alpha", "concave_color"),
("freestyle_alpha", "freestyle_color"),
("inbg_alpha", "inbg_color"), ("sticker_alpha", "sticker_fill"),
("text_alpha", "text_color"))})
styleargs.update({name: getattr(self.style, name) * self.style.line_width * 1000 for name in
("outer_width", "convex_width", "concave_width", "freestyle_width", "outbg_width", "inbg_width")})
for num, page in enumerate(mesh.pages):
with open("{}_{}.svg".format(filename, page.name), 'w') as f:
print(self.svg_base.format(width=self.page_size.x*1000, height=self.page_size.y*1000), file=f)
print(self.css_base.format(**styleargs), file=f)
if page.image_path:
print(self.image_linked_tag.format(
pos="{0} {0}".format(self.page_size),
width=self.page_size.x - 2 * self.page_size,
height=self.page_size.y - 2 * self.page_size,
path=path_convert(page.image_path)),
file=f)
if len(page.islands) > 1:
print("<g>", file=f)
for island in page.islands:
print("<g>", file=f)
if island.image_path:
print(self.image_linked_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=path_convert(island.image_path)),
file=f)
elif island.embedded_image:
print(self.image_embedded_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=island.image_path),
island.embedded_image, "'/>",
file=f, sep="")
if island.title:
print(self.text_tag.format(
size=1000 * self.text_size,
x=1000 * (island.bounding_box.x*0.5 + island.pos.x + self.margin),
y=1000 * (self.page_size.y - island.pos.y - self.margin - 0.2 * self.text_size),
label=island.title), file=f)
data_markers, data_stickerfill, data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(6))
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append("M {} Z".format(
line_through(self.format_vertex(vertex.co, island.pos) for vertex in marker.vertices)))
if marker.text:
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center, island.pos),
mat=format_matrix(marker.rot),
size=marker.width * 1000))
elif isinstance(marker, Arrow):
size = marker.size * 1000
position = marker.center + marker.rot*marker.size*M.Vector((0, -0.9))
data_markers.append(self.arrow_marker_tag.format(
index=marker.text,
arrow_pos=self.format_vertex(marker.center, island.pos),
scale=size,
pos=self.format_vertex(position, island.pos - marker.size*M.Vector((0, 0.4))),
mat=format_matrix(size * marker.rot)))
elif isinstance(marker, NumberAlone):
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center, island.pos),
mat=format_matrix(marker.rot),
size=marker.size * 1000))
if data_stickerfill and self.style.sticker_fill[3] > 0:
print("<path class='sticker' d='", rows(data_stickerfill), "'/>", file=f)
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(self.format_vertex(vertex.co, island.pos) for vertex in uvedge.sticker.vertices[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(self.format_vertex(vertex.co, island.pos))
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append("M {} Z".format(line_through(data_loop)))
for uvedge in island.edges:
edge = uvedge.edge
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = "M {}".format(
line_through(self.format_vertex(vertex.co, island.pos) for vertex in (uvedge.va, uvedge.vb)))
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge is in two opposite-oriented variants; we want to add each only once
if uvedge.sticker or uvedge.uvface.flipped != (uvedge.va.vertex.index > uvedge.vb.vertex.index):
if edge.angle > 0.01:
data_convex.append(data_uvedge)
elif edge.angle < -0.01:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_freestyle:
print("<path class='freestyle' d='", rows(data_freestyle), "'/>", file=f)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
print("<path class='inner_background' d='", rows(data_convex + data_concave), "'/>", file=f)
if data_convex:
print("<path class='convex' d='", rows(data_convex), "'/>", file=f)
if data_concave:
print("<path class='concave' d='", rows(data_concave), "'/>", file=f)
if data_outer:
if not self.pure_net and self.style.use_outbg:
print("<path class='outer_background' d='", rows(data_outer), "'/>", file=f)
print("<path class='outer' d='", rows(data_outer), "'/>", file=f)
if data_markers:
print(rows(data_markers), file=f)
print("</g>", file=f)
if len(page.islands) > 1:
print("</g>", file=f)
print("</svg>", file=f)
image_linked_tag = "<image transform='translate({pos})' width='{width}' height='{height}' xlink:href='{path}'/>"
image_embedded_tag = "<image transform='translate({pos})' width='{width}' height='{height}' xlink:href='data:image/png;base64,"
text_tag = "<text transform='translate({x} {y})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
text_transformed_tag = "<text transform='matrix({mat} {pos})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
arrow_marker_tag = "<g><path transform='matrix({mat} {arrow_pos})' class='arrow' d='M 0 0 L 1 1 L 0 0.25 L -1 1 Z'/>" \
"<text transform='translate({pos})' style='font-size:{scale:.2f}'><tspan>{index}</tspan></text></g>"
svg_base = """<?xml version='1.0' encoding='UTF-8' standalone='no'?>
<svg xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' version='1.1'
width='{width:.2f}mm' height='{height:.2f}mm' viewBox='0 0 {width:.2f} {height:.2f}'>"""
css_base = """<style type="text/css">
path {{
fill: none;
stroke-linecap: butt;
stroke-linejoin: bevel;
stroke-dasharray: none;
}}
path.outer {{
stroke: {outer_color};
stroke-dasharray: {outer_style};
stroke-dashoffset: 0;
stroke-width: {outer_width:.2};
stroke-opacity: {outer_alpha:.2};
}}
path.convex {{
stroke: {convex_color};
stroke-dasharray: {convex_style};
stroke-dashoffset:0;
stroke-width:{convex_width:.2};
stroke-opacity: {convex_alpha:.2}
}}
path.concave {{
stroke: {concave_color};
stroke-dasharray: {concave_style};
stroke-dashoffset: 0;
stroke-width: {concave_width:.2};
stroke-opacity: {concave_alpha:.2}
}}
path.freestyle {{
stroke: {freestyle_color};
stroke-dasharray: {freestyle_style};
stroke-dashoffset: 0;
stroke-width: {freestyle_width:.2};
stroke-opacity: {freestyle_alpha:.2}
}}
path.outer_background {{
stroke: {outbg_color};
stroke-opacity: {outbg_alpha};
stroke-width: {outbg_width:.2}
}}
path.inner_background {{
stroke: {inbg_color};
stroke-opacity: {inbg_alpha};
stroke-width: {inbg_width:.2}
}}
path.sticker {{
fill: {sticker_fill};
stroke: none;
fill-opacity: {sticker_alpha:.2};
}}
path.arrow {{
fill: #000;
}}
text {{
font-style: normal;
fill: {text_color};
fill-opacity: {text_alpha:.2};
stroke: none;
}}
text, tspan {{
text-anchor:middle;
}}
</style>"""
class Unfold(bpy.types.Operator):
"""Blender Operator: unfold the selected object."""
bl_idname = "mesh.unfold"
bl_label = "Unfold"
bl_description = "Mark seams so that the mesh can be exported as a paper model"
bl_options = {'REGISTER', 'UNDO'}
edit = bpy.props.BoolProperty(name="", description="", default=False, options={'HIDDEN'})
priority_effect_convex = bpy.props.FloatProperty(name="Priority Convex",
description="Priority effect for edges in convex angles",
default=default_priority_effect['CONVEX'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_concave = bpy.props.FloatProperty(name="Priority Concave",
description="Priority effect for edges in concave angles",
default=default_priority_effect['CONCAVE'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_length = bpy.props.FloatProperty(name="Priority Length",
description="Priority effect of edge length",
default=default_priority_effect['LENGTH'], soft_min=-10, soft_max=1, subtype='FACTOR')
do_create_uvmap = bpy.props.BoolProperty(name="Create UVMap",
description="Create a new UV Map showing the islands and page layout", default=False)
object = None
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == "MESH"
def draw(self, context):
layout = self.layout
col = layout.column()
col.active = not self.object or len(self.object.data.uv_textures) < 8
col.prop(self.properties, "do_create_uvmap")
layout.label(text="Edge Cutting Factors:")
col = layout.column(align=True)
col.label(text="Face Angle:")
col.prop(self.properties, "priority_effect_convex", text="Convex")
col.prop(self.properties, "priority_effect_concave", text="Concave")
layout.prop(self.properties, "priority_effect_length", text="Edge Length")
def execute(self, context):
sce = bpy.context.scene
settings = sce.paper_model
recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='OBJECT')
recall_display_islands, sce.paper_model.display_islands = sce.paper_model.display_islands, False
self.object = context.active_object
mesh = self.object.data
cage_size = M.Vector((settings.output_size_x, settings.output_size_y)) if settings.limit_by_page else None
priority_effect = {'CONVEX': self.priority_effect_convex, 'CONCAVE': self.priority_effect_concave, 'LENGTH': self.priority_effect_length}
unfolder = Unfolder(self.object)
unfolder.prepare(cage_size, self.do_create_uvmap, mark_seams=True, priority_effect=priority_effect, scale=sce.unit_settings.scale_length/settings.scale)
if mesh.paper_island_list:
unfolder.copy_island_names(mesh.paper_island_list)
island_list = mesh.paper_island_list
island_list.clear() # remove previously defined islands
for island in unfolder.mesh.islands:
# add islands to UI list and set default descriptions
list_item = island_list.add()
# add faces' IDs to the island
for uvface in island.faces:
lface = list_item.faces.add()
lface.id = uvface.face.index
# name must be set afterwards because it invokes an update callback
list_item["abbreviation"] = island.abbreviation or "?"
list_item.label = island.label or "No Name"
mesh.paper_island_index = -1
mesh.show_edge_seams = True
bpy.ops.object.mode_set(mode=recall_mode)
sce.paper_model.display_islands = recall_display_islands
return {'FINISHED'}
class ClearAllSeams(bpy.types.Operator):
"""Blender Operator: clear all seams of the active Mesh and all its unfold data"""
bl_idname = "mesh.clear_all_seams"
bl_label = "Clear All Seams"
bl_description = "Clear all the seams and unfolded islands of the active object"
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'
def execute(self, context):
ob = context.active_object
mesh = ob.data
for edge in mesh.edges:
edge.use_seam = False
mesh.paper_island_list.clear()
return {'FINISHED'}
def page_size_preset_changed(self, context):
"""Update the actual document size to correct values"""
if self.page_size_preset == 'A4':
self.output_size_x = 0.210
self.output_size_y = 0.297
elif self.page_size_preset == 'A3':
self.output_size_x = 0.297
self.output_size_y = 0.420
elif self.page_size_preset == 'US_LETTER':
self.output_size_x = 0.216
self.output_size_y = 0.279
elif self.page_size_preset == 'US_LEGAL':
self.output_size_x = 0.216
self.output_size_y = 0.356
class PaperModelStyle(bpy.types.PropertyGroup):
line_styles = [
('SOLID', "Solid (----)", "Solid line"),
('DOT', "Dots (. . .)", "Dotted line"),
('DASH', "Short Dashes (- - -)", "Solid line"),
('LONGDASH', "Long Dashes (-- --)", "Solid line"),
('DASHDOT', "Dash-dotted (-- .)", "Solid line")
]
outer_color = bpy.props.FloatVectorProperty(name="Outer Lines",
description="Color of net outline",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outer_style = bpy.props.EnumProperty(name="Outer Lines Drawing Style",
description="Drawing style of net outline",
default='SOLID', items=line_styles)
line_width = bpy.props.FloatProperty(name="Base Lines Thickness",
description="Base thickness of net lines, each actual value is a multiple of this length",
default=1e-4, min=0, soft_max=5e-3, precision=5, step=1e-2, subtype="UNSIGNED", unit="LENGTH")
outer_width = bpy.props.FloatProperty(name="Outer Lines Thickness",
description="Relative thickness of net outline",
default=3, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_outbg = bpy.props.BoolProperty(name="Highlight Outer Lines",
description="Add another line below every line to improve contrast",
default=True)
outbg_color = bpy.props.FloatVectorProperty(name="Outer Highlight",
description="Color of the highlight for outer lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outbg_width = bpy.props.FloatProperty(name="Outer Highlight Thickness",
description="Relative thickness of the highlighting lines",
default=5, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
convex_color = bpy.props.FloatVectorProperty(name="Inner Convex Lines",
description="Color of lines to be folded to a convex angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
convex_style = bpy.props.EnumProperty(name="Convex Lines Drawing Style",
description="Drawing style of lines to be folded to a convex angle",
default='DASH', items=line_styles)
convex_width = bpy.props.FloatProperty(name="Convex Lines Thickness",
description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
concave_color = bpy.props.FloatVectorProperty(name="Inner Concave Lines",
description="Color of lines to be folded to a concave angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
concave_style = bpy.props.EnumProperty(name="Concave Lines Drawing Style",
description="Drawing style of lines to be folded to a concave angle",
default='DASHDOT', items=line_styles)
concave_width = bpy.props.FloatProperty(name="Concave Lines Thickness",
description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
freestyle_color = bpy.props.FloatVectorProperty(name="Freestyle Edges",
description="Color of lines marked as Freestyle Edge",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
freestyle_style = bpy.props.EnumProperty(name="Freestyle Edges Drawing Style",
description="Drawing style of Freestyle Edges",
default='SOLID', items=line_styles)
freestyle_width = bpy.props.FloatProperty(name="Freestyle Edges Thickness",
description="Relative thickness of Freestyle edges",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_inbg = bpy.props.BoolProperty(name="Highlight Inner Lines",
description="Add another line below every line to improve contrast",
default=True)
inbg_color = bpy.props.FloatVectorProperty(name="Inner Highlight",
description="Color of the highlight for inner lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
inbg_width = bpy.props.FloatProperty(name="Inner Highlight Thickness",
description="Relative thickness of the highlighting lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
sticker_fill = bpy.props.FloatVectorProperty(name="Tabs Fill",
description="Fill color of sticking tabs",
default=(0.9, 0.9, 0.9, 1.0), min=0, max=1, subtype='COLOR', size=4)
text_color = bpy.props.FloatVectorProperty(name="Text Color",
description="Color of all text used in the document",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
bpy.utils.register_class(PaperModelStyle)
class ExportPaperModel(bpy.types.Operator):
"""Blender Operator: save the selected object's net and optionally bake its texture"""
bl_idname = "export_mesh.paper_model"
bl_label = "Export Paper Model"
bl_description = "Export the selected object's net and optionally bake its texture"
filepath = bpy.props.StringProperty(name="File Path",
description="Target file to save the SVG", options={'SKIP_SAVE'})
filename = bpy.props.StringProperty(name="File Name",
description="Name of the file", options={'SKIP_SAVE'})
directory = bpy.props.StringProperty(name="Directory",
description="Directory of the file", options={'SKIP_SAVE'})
page_size_preset = bpy.props.EnumProperty(name="Page Size",
description="Size of the exported document",
default='A4', update=page_size_preset_changed, items=[
('USER', "User defined", "User defined paper size"),
('A4', "A4", "International standard paper size"),
('A3', "A3", "International standard paper size"),
('US_LETTER', "Letter", "North American paper size"),
('US_LEGAL', "Legal", "North American paper size")
])
output_size_x = bpy.props.FloatProperty(name="Page Width",
description="Width of the exported document",
default=0.210, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH")
output_size_y = bpy.props.FloatProperty(name="Page Height",
description="Height of the exported document",
default=0.297, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH")
output_margin = bpy.props.FloatProperty(name="Page Margin",
description="Distance from page borders to the printable area",
default=0.005, min=0, soft_max=0.1, step=0.1, subtype="UNSIGNED", unit="LENGTH")
output_type = bpy.props.EnumProperty(name="Textures",
description="Source of a texture for the model",
default='NONE', items=[
('NONE', "No Texture", "Export the net only"),
('TEXTURE', "From Materials", "Render the diffuse color and all painted textures"),
('RENDER', "Full Render", "Render the material in actual scene illumination"),
('SELECTED_TO_ACTIVE', "Selected to Active", "Render all selected surrounding objects as a texture")
])
do_create_stickers = bpy.props.BoolProperty(name="Create Tabs",
description="Create gluing tabs around the net (useful for paper)",
default=True)
do_create_numbers = bpy.props.BoolProperty(name="Create Numbers",
description="Enumerate edges to make it clear which edges should be sticked together",
default=True)
sticker_width = bpy.props.FloatProperty(name="Tabs and Text Size",
description="Width of gluing tabs and their numbers",
default=0.005, soft_min=0, soft_max=0.05, step=0.1, subtype="UNSIGNED", unit="LENGTH")
output_dpi = bpy.props.FloatProperty(name="Resolution (DPI)",
description="Resolution of images in pixels per inch",
default=90, min=1, soft_min=30, soft_max=600, subtype="UNSIGNED")
image_packing = bpy.props.EnumProperty(name="Image Packing Method",
description="Method of attaching baked image(s) to the SVG",
default='ISLAND_EMBED', items=[
('PAGE_LINK', "Single Linked", "Bake one image per page of output and save it separately"),
('ISLAND_LINK', "Linked", "Bake images separately for each island and save them in a directory"),
('ISLAND_EMBED', "Embedded", "Bake images separately for each island and embed them into the SVG")
])
scale = bpy.props.FloatProperty(name="Scale",
description="Divisor of all dimensions when exporting",
default=1, soft_min=1.0, soft_max=10000.0, step=100, subtype='UNSIGNED', precision=0)
do_create_uvmap = bpy.props.BoolProperty(name="Create UVMap",
description="Create a new UV Map showing the islands and page layout",
default=False, options={'SKIP_SAVE'})
ui_expanded_document = bpy.props.BoolProperty(name="Show Document Settings Expanded",
description="Shows the box 'Document Settings' expanded in user interface",
default=True, options={'SKIP_SAVE'})
ui_expanded_style = bpy.props.BoolProperty(name="Show Style Settings Expanded",
description="Shows the box 'Colors and Style' expanded in user interface",
default=False, options={'SKIP_SAVE'})
style = bpy.props.PointerProperty(type=PaperModelStyle)
unfolder = None
largest_island_ratio = 0
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'
def execute(self, context):
try:
if self.object.data.paper_island_list:
self.unfolder.copy_island_names(self.object.data.paper_island_list)
self.unfolder.save(self.properties)
self.report({'INFO'}, "Saved a {}-page document".format(len(self.unfolder.mesh.pages)))
return {'FINISHED'}
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
return {'CANCELLED'}
except:
raise
def get_scale_ratio(self, sce):
margin = self.output_margin + self.sticker_width + 1e-5
if min(self.output_size_x, self.output_size_y) <= 2 * margin:
return False
output_inner_size = M.Vector((self.output_size_x - 2*margin, self.output_size_y - 2*margin))
ratio = self.unfolder.mesh.largest_island_ratio(output_inner_size)
return ratio * sce.unit_settings.scale_length / self.scale
def invoke(self, context, event):
sce = context.scene
recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='OBJECT')
self.scale = sce.paper_model.scale
self.object = context.active_object
self.unfolder = Unfolder(self.object)
cage_size = M.Vector((sce.paper_model.output_size_x, sce.paper_model.output_size_y)) if sce.paper_model.limit_by_page else None
self.unfolder.prepare(cage_size, create_uvmap=self.do_create_uvmap, scale=sce.unit_settings.scale_length/self.scale)
scale_ratio = self.get_scale_ratio(sce)
if scale_ratio > 1:
self.scale *= scale_ratio
wm = context.window_manager
wm.fileselect_add(self)
bpy.ops.object.mode_set(mode=recall_mode)
return {'RUNNING_MODAL'}
def draw(self, context):
layout = self.layout
layout.prop(self.properties, "do_create_uvmap")
row = layout.row(align=True)
row.menu("VIEW3D_MT_paper_model_presets", text=bpy.types.VIEW3D_MT_paper_model_presets.bl_label)
row.operator("export_mesh.paper_model_preset_add", text="", icon='ZOOMIN')
row.operator("export_mesh.paper_model_preset_add", text="", icon='ZOOMOUT').remove_active = True
# a little hack: this prints out something like "Scale: 1: 72"
layout.prop(self.properties, "scale", text="Scale: 1")
scale_ratio = self.get_scale_ratio(context.scene)
if scale_ratio > 1:
layout.label(text="An island is roughly {:.1f}x bigger than page".format(scale_ratio), icon="ERROR")
elif scale_ratio > 0:
layout.label(text="Largest island is roughly 1/{:.1f} of page".format(1 / scale_ratio))
box = layout.box()
row = box.row(align=True)
row.prop(self.properties, "ui_expanded_document", text="",
icon=('TRIA_DOWN' if self.ui_expanded_document else 'TRIA_RIGHT'), emboss=False)
row.label(text="Document Settings")
if self.ui_expanded_document:
box.prop(self.properties, "page_size_preset")
col = box.column(align=True)
col.active = self.page_size_preset == 'USER'
col.prop(self.properties, "output_size_x")
col.prop(self.properties, "output_size_y")
box.prop(self.properties, "output_margin")
col = box.column()
col.prop(self.properties, "do_create_stickers")
col.prop(self.properties, "do_create_numbers")
col = box.column()
col.active = self.do_create_stickers or self.do_create_numbers
col.prop(self.properties, "sticker_width")
box.prop(self.properties, "output_type")
col = box.column()
col.active = (self.output_type != 'NONE')
if len(self.object.data.uv_textures) == 8:
col.label(text="No UV slots left, No Texture is the only option.", icon='ERROR')
elif context.scene.render.engine != 'BLENDER_RENDER' and self.output_type != 'NONE':
col.label(text="Blender Internal engine will be used for texture baking.", icon='ERROR')
col.prop(self.properties, "output_dpi")
col.prop(self.properties, "image_packing", text="Images")
box = layout.box()
row = box.row(align=True)
row.prop(self.properties, "ui_expanded_style", text="",
icon=('TRIA_DOWN' if self.ui_expanded_style else 'TRIA_RIGHT'), emboss=False)
row.label(text="Colors and Style")
if self.ui_expanded_style:
box.prop(self.style, "line_width", text="Default line width")
col = box.column()
col.prop(self.style, "outer_color")
col.prop(self.style, "outer_width", text="Relative width")
col.prop(self.style, "outer_style", text="Style")
col = box.column()
col.active = self.output_type != 'NONE'
col.prop(self.style, "use_outbg", text="Outer Lines Highlight:")
sub = col.column()
sub.active = self.output_type != 'NONE' and self.style.use_outbg
sub.prop(self.style, "outbg_color", text="")
sub.prop(self.style, "outbg_width", text="Relative width")
col = box.column()
col.prop(self.style, "convex_color")
col.prop(self.style, "convex_width", text="Relative width")
col.prop(self.style, "convex_style", text="Style")
col = box.column()
col.prop(self.style, "concave_color")
col.prop(self.style, "concave_width", text="Relative width")
col.prop(self.style, "concave_style", text="Style")
col = box.column()
col.prop(self.style, "freestyle_color")
col.prop(self.style, "freestyle_width", text="Relative width")
col.prop(self.style, "freestyle_style", text="Style")
col = box.column()
col.active = self.output_type != 'NONE'
col.prop(self.style, "use_inbg", text="Inner Lines Highlight:")
sub = col.column()
sub.active = self.output_type != 'NONE' and self.style.use_inbg
sub.prop(self.style, "inbg_color", text="")
sub.prop(self.style, "inbg_width", text="Relative width")
col = box.column()
col.active = self.do_create_stickers
col.prop(self.style, "sticker_fill")
box.prop(self.style, "text_color")
def menu_func(self, context):
self.layout.operator("export_mesh.paper_model", text="Paper Model (.svg)")
class VIEW3D_MT_paper_model_presets(bpy.types.Menu):
bl_label = "Paper Model Presets"
preset_subdir = "export_mesh"
preset_operator = "script.execute_preset"
draw = bpy.types.Menu.draw_preset
class AddPresetPaperModel(bl_operators.presets.AddPresetBase, bpy.types.Operator):
"""Add or remove a Paper Model Preset"""
bl_idname = "export_mesh.paper_model_preset_add"
bl_label = "Add Paper Model Preset"
preset_menu = "VIEW3D_MT_paper_model_presets"
preset_subdir = "export_mesh"
preset_defines = ["op = bpy.context.active_operator"]
@property
def preset_values(self):
op = bpy.ops.export_mesh.paper_model
properties = op.get_rna().bl_rna.properties.items()
blacklist = bpy.types.Operator.bl_rna.properties.keys()
return ["op.{}".format(prop_id) for (prop_id, prop) in properties
if not (prop.is_hidden or prop.is_skip_save or prop_id in blacklist)]
class VIEW3D_PT_paper_model_tools(bpy.types.Panel):
bl_label = "Tools"
bl_space_type = "VIEW_3D"
bl_region_type = "TOOLS"
bl_category = "Paper Model"
def draw(self, context):
layout = self.layout
sce = context.scene
obj = context.active_object
mesh = obj.data if obj and obj.type == 'MESH' else None
layout.operator("export_mesh.paper_model")
col = layout.column(align=True)
col.label("Customization:")
col.operator("mesh.unfold")
if context.mode == 'EDIT_MESH':
row = layout.row(align=True)
row.operator("mesh.mark_seam", text="Mark Seam").clear = False
row.operator("mesh.mark_seam", text="Clear Seam").clear = True
else:
layout.operator("mesh.clear_all_seams")
layout.prop(sce.paper_model, "scale", text="Model Scale: 1")
col = layout.column(align=True)
col.prop(sce.paper_model, "limit_by_page")
sub = col.column(align=True)
sub.active = sce.paper_model.limit_by_page
sub.prop(sce.paper_model, "output_size_x")
sub.prop(sce.paper_model, "output_size_y")
class VIEW3D_PT_paper_model_islands(bpy.types.Panel):
bl_label = "Islands"
bl_space_type = "VIEW_3D"
bl_region_type = "TOOLS"
bl_category = "Paper Model"
def draw(self, context):
layout = self.layout
sce = context.scene
obj = context.active_object
mesh = obj.data if obj and obj.type == 'MESH' else None
if mesh and mesh.paper_island_list:
layout.label(text="1 island:" if len(mesh.paper_island_list) == 1 else
"{} islands:".format(len(mesh.paper_island_list)))
layout.template_list('UI_UL_list', 'paper_model_island_list', mesh,
'paper_island_list', mesh, 'paper_island_index', rows=1, maxrows=5)
if mesh.paper_island_index >= 0:
list_item = mesh.paper_island_list[mesh.paper_island_index]
sub = layout.column(align=True)
sub.prop(list_item, "label")
sub.prop(list_item, "auto_abbrev")
row = sub.row()
row.active = not list_item.auto_abbrev
row.prop(list_item, "abbreviation")
else:
layout.label(text="Not unfolded")
layout.box().label("Use the 'Unfold' tool")
sub = layout.column(align=True)
sub.active = bool(mesh and mesh.paper_island_list)
sub.prop(sce.paper_model, "display_islands", icon='RESTRICT_VIEW_OFF')
row = sub.row(align=True)
row.active = bool(sce.paper_model.display_islands and mesh and mesh.paper_island_list)
row.prop(sce.paper_model, "islands_alpha", slider=True)
def display_islands(self, context):
# TODO: save the vertex positions and don't recalculate them always?
ob = context.active_object
if not ob or ob.type != 'MESH':
return
mesh = ob.data
if not mesh.paper_island_list or mesh.paper_island_index == -1:
return
bgl.glMatrixMode(bgl.GL_PROJECTION)
perspMatrix = context.space_data.region_3d.perspective_matrix
perspBuff = bgl.Buffer(bgl.GL_FLOAT, (4, 4), perspMatrix.transposed())
bgl.glLoadMatrixf(perspBuff)
bgl.glMatrixMode(bgl.GL_MODELVIEW)
objectBuff = bgl.Buffer(bgl.GL_FLOAT, (4, 4), ob.matrix_world.transposed())
bgl.glLoadMatrixf(objectBuff)
bgl.glEnable(bgl.GL_BLEND)
bgl.glBlendFunc(bgl.GL_SRC_ALPHA, bgl.GL_ONE_MINUS_SRC_ALPHA)
bgl.glEnable(bgl.GL_POLYGON_OFFSET_FILL)
bgl.glPolygonOffset(0, -10) # offset in Zbuffer to remove flicker
bgl.glPolygonMode(bgl.GL_FRONT_AND_BACK, bgl.GL_FILL)
bgl.glColor4f(1.0, 0.4, 0.0, self.islands_alpha)
island = mesh.paper_island_list[mesh.paper_island_index]
for lface in island.faces:
face = mesh.polygons[lface.id]
bgl.glBegin(bgl.GL_POLYGON)
for vertex_id in face.vertices:
vertex = mesh.vertices[vertex_id]
bgl.glVertex4f(*vertex.co.to_4d())
bgl.glEnd()
bgl.glPolygonOffset(0.0, 0.0)
bgl.glDisable(bgl.GL_POLYGON_OFFSET_FILL)
bgl.glLoadIdentity()
display_islands.handle = None
def display_islands_changed(self, context):
"""Switch highlighting islands on/off"""
if self.display_islands:
if not display_islands.handle:
display_islands.handle = bpy.types.SpaceView3D.draw_handler_add(display_islands, (self, context), 'WINDOW', 'POST_VIEW')
else:
if display_islands.handle:
bpy.types.SpaceView3D.draw_handler_remove(display_islands.handle, 'WINDOW')
display_islands.handle = None
def label_changed(self, context):
"""The labelling of an island was changed"""
# accessing properties via [..] to avoid a recursive call after the update
if self.auto_abbrev:
self["abbreviation"] = "".join(first_letters(self.label)).upper()
elif len(self.abbreviation) > 3:
self["abbreviation"] = self.abbreviation[:3]
self.name = "[{}] {} ({} {})".format(self.abbreviation, self.label, len(self.faces), "faces" if len(self.faces) > 1 else "face")
class FaceList(bpy.types.PropertyGroup):
id = bpy.props.IntProperty(name="Face ID")
class IslandList(bpy.types.PropertyGroup):
faces = bpy.props.CollectionProperty(type=FaceList, name="Faces",
description="Faces belonging to this island")
label = bpy.props.StringProperty(name="Label",
description="Label on this island",
default="", update=label_changed)
abbreviation = bpy.props.StringProperty(name="Abbreviation",
description="Three-letter label to use when there is not enough space",
default="", update=label_changed)
auto_abbrev = bpy.props.BoolProperty(name="Auto Abbreviation",
description="Generate the abbreviation automatically",
default=True, update=label_changed)
bpy.utils.register_class(FaceList)
bpy.utils.register_class(IslandList)
class PaperModelSettings(bpy.types.PropertyGroup):
display_islands = bpy.props.BoolProperty(name="Highlight selected island",
description="Highlight faces corresponding to the selected island in the 3D View",
options={'SKIP_SAVE'}, update=display_islands_changed)
islands_alpha = bpy.props.FloatProperty(name="Opacity",
description="Opacity of island highlighting", min=0.0, max=1.0, default=0.3)
limit_by_page = bpy.props.BoolProperty(name="Limit Island Size",
description="Do not create islands larger than given dimensions", default=False)
output_size_x = bpy.props.FloatProperty(name="Width",
description="Maximal width of an island",
default=0.2, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH")
output_size_y = bpy.props.FloatProperty(name="Height",
description="Maximal height of an island",
default=0.29, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH")
scale = bpy.props.FloatProperty(name="Scale",
description="Divisor of all dimensions when exporting",
default=1, soft_min=1.0, soft_max=10000.0, subtype='UNSIGNED', precision=0)
bpy.utils.register_class(PaperModelSettings)
def register():
bpy.utils.register_module(__name__)
bpy.types.Scene.paper_model = bpy.props.PointerProperty(type=PaperModelSettings,
name="Paper Model",
description="Settings of the Export Paper Model script",
options={'SKIP_SAVE'})
bpy.types.Mesh.paper_island_list = bpy.props.CollectionProperty(type=IslandList,
name="Island List", description="")
bpy.types.Mesh.paper_island_index = bpy.props.IntProperty(name="Island List Index",
default=-1, min=-1, max=100, options={'SKIP_SAVE'})
bpy.types.INFO_MT_file_export.append(menu_func)
def unregister():
bpy.utils.unregister_module(__name__)
bpy.types.INFO_MT_file_export.remove(menu_func)
if display_islands.handle:
bpy.types.SpaceView3D.draw_handler_remove(display_islands.handle, 'WINDOW')
display_islands.handle = None
if __name__ == "__main__":
register()