# Find all failed authentication attempts
fields @timestamp, userIdentity.principalId, errorCode, errorMessage
| filter errorCode like /Unauthorized|Denied|Failed/
| sort @timestamp desc
______JEANSON ANCHETA______
Stop Paying for Fluff. Start Getting Results.
U.S.A ๐
๐ก๏ธ Verified โข HQ Access โข Fast Delivery
๐ฌ DM for escrow or direct ๐ฅ
WESTERN UNION / MONEYGRAM / BANK LOGINS / BANK SWAPS / PAYPAL SWAPS GLOBAL / CASHAPP / ZELLE / APPLE PAY / SKRILL / VENMO SWAPS
ยฉ2025 Telegram: @JeansonCarder
https://t.me/+2__ynBAtFP00M2Fk
https://t.me/+CsF2t7HvV_ljMmU8
Hello fam, offering HQ services ๐ป๐ธ โ got WU pluggz, bank logs w/ fullz, PayPal jobz, Skrill flips ๐ฅ. HMU fimport torch
import torch.nn as nn
import torch.nn.functional as F
# === 1. Multimodal Pedagogical Encoder (HIPLE Core) ===
class MultimodalPedagogicalEncoder(nn.Module):
"""Processes multimodal teaching signals and student responses."""
def __init__(self, input_dim=256, hidden_dim=512, num_layers=2):
super().__init__()
self.attn = nn.MultiheadAttention(hidden_dim, num_heads=4, batch_first=True)
self.rnn = nn.GRU(hidden_dim, hidden_dim, num_layers=numimport torch
import torch.nn as nn
import torch.nn.functional as F
class MultimodalEncoder(nn.Module):
"""Encodes strain, vibration, and temperature sensor data using dynamic spatial attention."""
def __init__(self, input_dim=128, hidden_dim=256):
super().__init__()
self.ln = nn.LayerNorm(input_dim)
self.proj_q = nn.Linear(input_dim, hidden_dim)
self.proj_k = nn.Linear(input_dim, hidden_dim)
self.proj_v = nn.Linear(input_dim, hidden_dimport torch
import torch.nn as nn
import torch.nn.functional as F
class VolunteeringEncoder(nn.Module):
"""Encodes volunteering activities into contextual latent representations."""
def __init__(self, input_dim, hidden_dim=256):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim)
)
def forward(selfimport torch
import torch.nn as nn
import torch.nn.functional as F
class LSTMEncoder(nn.Module):
"""Encodes sequential input using stacked LSTM layers."""
def __init__(self, input_dim, hidden_dim, num_layers=2):
super().__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True, dropout=0.2)
def forward(self, x):
out, _ = self.lstm(x)
return out
class MultiScaleConv(nn.Module):
"""Extracts temporal import torch
import torch.nn as nn
import torch.nn.functional as F
class StructuredEncoder(nn.Module):
"""
Feedforward encoder for structured data (tabular, KPIs, etc.)
"""
def __init__(self, input_dim, hidden_dim=256):
super().__init__()
self.net = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
import torch
import torch.nn as nn
import torch.nn.functional as F
class HierarchicalBlock(nn.Module):
"""
Hierarchical block that refines feature representations
through multiple nonlinear transformations.
"""
def __init__(self, in_dim, hidden_dim, num_layers=3):
super().__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(nn.Sequential(
nn.Linear(in_dim if i == 0 else hidde<!DOCTYPE html>
<html lang="en-us">
<head>
<base href="https://cdn.jsdelivr.net/gh/genizy/web-port@main/baldi-plus/">
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Unity WebGL Player | Baldi's Basics Plus</title>
<style>
html,
body {
margin: 0;
padding: 0;
border: 0;
height: 100%;
width: 100%;
overflow: hidden;
import torch
import torch.nn as nn
import torch.nn.functional as F
# ----------------------------------------------------
# 1. Multimodal Encoder: CNN + Temporal Attention
# ----------------------------------------------------
class MultiScaleEncoder(nn.Module):
"""
Extracts spatial features using multi-scale dilated convolutions.
"""
def __init__(self, in_channels=3, base_channels=64):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, base_chimport torch
import torch.nn as nn
import torch.nn.functional as F
# ------------------------------
# SceneGraph-Informed Neural Feedback Engine (SNiFE)
# ------------------------------
class SceneGraphEmbedding(nn.Module):
"""
Scene graph embedding and conditioning module.
Encodes geometric, semantic, and aesthetic object attributes.
"""
def __init__(self, input_dim=128, hidden_dim=256):
super().__init__()
self.geo_encoder = nn.Linear(input_dimport torch
import torch.nn as nn
import torch.nn.functional as F
class DynamicEdgeEncoder(nn.Module):
"""
Dynamic Edge Encoding Module
Learns time-varying adjacency matrices for IoT graphs
using latency, reliability, and contextual metadata.
"""
def __init__(self, hidden_dim, threshold=0.2):
super().__init__()
self.edge_fc = nn.Linear(hidden_dim, hidden_dim)
self.att_proj = nn.Linear(hidden_dim, 1)
self.threshold = threshimport torch
import torch.nn as nn
import torch.nn.functional as F
class SymbolGuidedAttention(nn.Module):
"""
Symbol-Guided Multi-Head Attention with symbolic bias vectors.
Implements the symbolic-aware attention mechanism from NSCT.
"""
def __init__(self, d_model, n_heads):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.scale = (d_model // n_heads) ** 0.5
self.WQ = nn.Linear(d_model, d_model)
import torch
import torch.nn as nn
import torch.nn.functional as F
class CrossLevelDynamics(nn.Module):
"""
Cross-Level Dynamics (CLD)
Models top-down and bottom-up interactions between decision layers
using attention and temporal CNNs.
"""
def __init__(self, input_dim, hidden_dim, num_heads=4):
super(CrossLevelDynamics, self).__init__()
self.attention = nn.MultiheadAttention(hidden_dim, num_heads)
self.temporal_encoder = nn.Conv1d(import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# ======================================================
# 1. Graphical Neural Encoding (from GridaNet)
# ======================================================
class GraphicalEncoding(nn.Module):
def __init__(self, d_model=256):
super().__init__()
self.linear_q = nn.Linear(d_model, d_model)
self.linear_k = nn.Linear(d_model, d_model)
self.linear_v = nn.Linear(d_model,import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# ============================================================
# Environment-Aware Attention Module (EAAM)
# ============================================================
class EAAM(nn.Module):
def __init__(self, in_channels, reduction=4):
super().__init__()
self.query = nn.Conv2d(in_channels, in_channels // reduction, 1)
self.key = nn.Conv2d(in_channels, in_channels // reductio