Custom CLI init-model command which supports optional binary vectors plus scripts for generating word frequencies and Gensim vectors for spacy language models based on https://spacy.io/usage/adding-languages#section-training
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import logging
import click
import math
from tqdm import tqdm
import numpy
from preshed.counter import PreshCounter
from spacy.compat import fix_text
from spacy.vectors import Vectors
from spacy.util import prints, ensure_path, get_lang_class
@click.command(name='init-model')
@click.argument('lang', type=str)
@click.argument('output_dir', type=click.Path())
@click.argument('freqs_loc', type=click.Path())
@click.option('--clusters_loc', '-c',
help='location of brown clusters data',
type=click.Path())
@click.option('--vectors_loc', '-v',
help='location of vectors file in GenSim text format',
type=click.Path())
@click.option('--binary_vectors', '-b',
help='Flag indicating vectors file is in GenSim binary format',
is_flag=True)
@click.option('--prune_vectors', '-V',
help='number of vectors to prune to',
default=-1,
type=int)
def init_model(lang, output_dir, freqs_loc, clusters_loc=None,
vectors_loc=None, binary_vectors=True, prune_vectors=-1):
"""
Create a new model from raw data, like word frequencies, Brown clusters
and word vectors.
LANG: language code
OUTPUT_DIR: model output directory
FREQS_LOC: location of words frequencies file
"""
freqs_loc = ensure_path(freqs_loc)
clusters_loc = ensure_path(clusters_loc)
vectors_loc = ensure_path(vectors_loc)
output_dir = ensure_path(output_dir)
if not freqs_loc.exists():
prints(freqs_loc, title="Can't find words frequencies file", exits=1)
probs, oov_prob = read_freqs(freqs_loc)
if vectors_loc:
if binary_vectors:
vectors_data, vector_keys = read_binary_vectors(vectors_loc)
else:
vectors_data, vector_keys = read_vectors(vectors_loc)
else:
vectors_data = numpy.empty((0, 0))
vector_keys = []
clusters = read_clusters(clusters_loc) if clusters_loc else {}
nlp = create_model(lang, probs, oov_prob, clusters, vectors_data,
vector_keys, prune_vectors)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
return nlp
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys,
prune_vectors):
print("Creating model...")
lang_class = get_lang_class(lang)
nlp = lang_class()
for lexeme in nlp.vocab:
lexeme.rank = 0
lex_added = 0
for i, (word, prob) in enumerate(tqdm(
sorted(probs.items(), key=lambda item: item[1], reverse=True))):
lexeme = nlp.vocab[word]
lexeme.rank = i
lexeme.prob = prob
lexeme.is_oov = False
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
lexeme.cluster = int(clusters[word][::-1], 2)
else:
lexeme.cluster = 0
lex_added += 1
nlp.vocab.cfg.update({'oov_prob': oov_prob})
if len(vectors_data):
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
if prune_vectors >= 1:
nlp.vocab.prune_vectors(prune_vectors)
vec_added = len(nlp.vocab.vectors)
prints("{} entries, {} vectors".format(lex_added, vec_added),
title="Sucessfully compiled vocab")
return nlp
def read_vectors(vectors_loc):
print("Reading vectors...")
with vectors_loc.open() as f:
shape = tuple(int(size) for size in f.readline().split())
vectors_data = numpy.zeros(shape=shape, dtype='f')
vectors_keys = []
for i, line in enumerate(tqdm(f)):
pieces = line.split()
if pieces:
word = pieces.pop(0)
try:
vectors_data[i] = numpy.array(
[float(val_str) for val_str in pieces],
dtype='f')
vectors_keys.append(word)
except Exception as e:
logging.warning(str(e))
else:
logging.warning('Could not parse line: %s: %s', i, line)
return vectors_data, vectors_keys
def read_binary_vectors(vectors_loc):
print("Reading binary vectors...")
from gensim.models import Word2Vec
model = Word2Vec.load(str(vectors_loc))
vectors_data = numpy.zeros(shape=model.wv.syn0.shape, dtype='f')
vectors_keys = []
for i, (word, vocab) in enumerate(
sorted(model.wv.vocab.items(), key=lambda item: -item[1].count)):
vectors_data[i] = model.wv.syn0[vocab.index]
vectors_keys.append(word)
return vectors_data, vectors_keys
def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
print("Counting frequencies...")
counts = PreshCounter()
total = 0
with freqs_loc.open() as f:
for i, line in enumerate(f):
freq, doc_freq, key = line.rstrip().split('\t', 2)
freq = int(freq)
counts.inc(i + 1, freq)
total += freq
counts.smooth()
log_total = math.log(total)
probs = {}
with freqs_loc.open() as f:
for line in tqdm(f):
freq, doc_freq, key = line.rstrip().split('\t', 2)
doc_freq = int(doc_freq)
freq = int(freq)
if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
smooth_count = counts.smoother(int(freq))
probs[key] = math.log(smooth_count) - log_total
oov_prob = math.log(counts.smoother(0)) - log_total
return probs, oov_prob
def read_clusters(clusters_loc):
print("Reading clusters...")
clusters = {}
with clusters_loc.open() as f:
for line in tqdm(f):
try:
cluster, word, freq = line.split()
word = fix_text(word)
except ValueError:
continue
# If the clusterer has only seen the word a few times, its
# cluster is unreliable.
if int(freq) >= 3:
clusters[word] = cluster
else:
clusters[word] = '0'
# Expand clusters with re-casing
for word, cluster in list(clusters.items()):
if word.lower() not in clusters:
clusters[word.lower()] = cluster
if word.title() not in clusters:
clusters[word.title()] = cluster
if word.upper() not in clusters:
clusters[word.upper()] = cluster
return clusters