.ly_form_section_inner_content_border_wrap_text_link {
position: relative;
display: inline;
background-image: linear-gradient(var(--blue-color), var(--blue-color));
background-position: 100% 100%;
background-repeat: no-repeat;
background-size: 0% 1px;
transition: background-size 0.3s;
padding-bottom: 2px; /* テキストと下線の間隔を調整 */
}
.ly_form_section_inner_content_border_wrap_text_link:hover {
background-size: 100% 1px;
background-position: 0 100%;
}
// setIntervalの場合
let intervalTime = 1000;
const intervalId = setInterval(() => {
console.log(`インターバル`);
// 変数は上書きされているが、setIntervalが呼び出された後に変更しても時間間隔は変わらない
intervalTime = 2000;
}, intervalTime);
// setTimeoutの場合
let timeoutTime = 1000;
const timeoutLoop = () => {
console.log(`タイムアウト`);
// setTimeoutでは時間感覚を変更できる
timeoutTime = 5000;
setTimeout(timeoutLoop, timeoutTime);
};
// 最初のループを開始
setTimeout(timeoutLoop, timeoutTime);
/**
* @param {string} allowed
* @param {string[]} words
* @return {number}
*/
var countConsistentStrings = function(allowed, words) {
// Create a set of allowed characters for quick lookup
const allowedSet = new Set(allowed);
// Initialize the count of consistent strings
let consistentCount = 0;
// Iterate through each word in the words array
for (const word of words) {
// Assume the word is consistent
let isConsistent = true;
// Check each
<mvt:if expr="ISNULL g.Session:shadows:checkout_hidden">
<mvt:fragment code="global_footer" />
</mvt:if>
<mvt:if expr="ISNULL g.Session:shadows:checkout_hidden">
<mvt:fragment code="global_header" />
</mvt:if>
### Files Downloaded for LLMs and Embeddings Models
When you load an LLM or an embeddings model using the `AutoModel` class, several key files are downloaded. The new Hugging Face cache structure places these files in specific directories under `~/.cache/huggingface/hub/`.
Here’s a breakdown of the files and their locations:
1. **Model Weights (`pytorch_model.bin` or `tf_model.h5`)**:
- This file contains the pre-trained weights for the model.
- **Location**:
```
~/.
### Tokenizer Files Downloaded
When you load a tokenizer using `AutoTokenizer` from the Hugging Face `transformers` library, several files are downloaded to support tokenization. These files are essential for ensuring that the input text is processed in the same way the model was trained.
Here's a list of typical files downloaded and their locations in the new cache structure:
1. **Tokenizer Configuration (`tokenizer_config.json`)**:
- This file contains information about how the t
// Author : Jay Daltrey
// Title : BankMidBatchProcessor
// Method Purpose : Process bank accounts to create or update MID Banking records
public class BankMidBatchProcessor implements Database.Batchable<SObject>, Database.Stateful {
private Map<String, Id> masterBankAccountMap;
private List<MID_Banking__c> midBankingList = new List<MID_Banking__c>();
private List<Banking__c> nonMasterBankListToUpdate = new List<Banking__c>();
public Database.QueryLocato
To open files with an iterator from a given folder in Python, you can use the `os` or `pathlib` libraries to list the files in the folder and then use an iterator to process them one by one. Here's an example using both approaches.
### Approach 1: Using `os` and a generator
```python
import os
def file_iterator(folder_path):
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
with open(file_path
%root% {
position: relative;
}
%root%__heading a::after {
content: '';
position: absolute;
inset: 0;
display: flex;
z-index: 1;
}
Here’s a concise, pedagogical overview of the **5 most fundamental uses of `gsutil`**, with clear explanations of how each command is typically used:
### 1. **Copy files (`cp`)**
- **Command:** `gsutil cp [source] [destination]`
- **What it does:** Copies files between your local machine and Google Cloud Storage (GCS), or between two locations in GCS.
- **Example:**
```bash
# Copy a file from local machine to GCS
gsutil cp ./file.txt gs://my-bucket/folder/file.txt
To check basic memory usage on a Linux system, you can use the following commands:
1. **`free` command:**
This is the most common command to check memory usage.
```bash
free -h
```
The `-h` option shows the output in human-readable format (MB, GB).
Example output:
```
total used free shared buff/cache available
Mem: 15Gi 2.3Gi 9.7Gi 120Mi 3.1Gi 12Gi
Swap: 2.0Gi 0.0Ki
You can check the hosting operating system within a shell by using any of the following commands, depending on the system you're working on:
### For Linux or macOS:
1. **Basic OS Information:**
```bash
uname -a
```
This shows general system information, including the OS name, kernel version, and more.
2. **OS Version:**
```bash
cat /etc/os-release
```
This will give you detailed information about the operating system version and distribution (for Linux).
3. **Kernel Ve
PROJECT_ID = PROJECT_ID
REGION = "europe-west1"
MODEL_ID = MODEL_ID
import vertexai
from vertexai.language_models import TextEmbeddingModel
vertexai.init(project=PROJECT_ID, location=REGION)
model = TextEmbeddingModel.from_pretrained(MODEL_ID)
embeddings = model.get_embeddings(...)
☝️ There is some level of randomness involved in both the embedding and retrieval steps of a RAG (Retrieval-Augmented Generation) model, but the randomness can be controlled or reduced, depending on how the system is set up. Let me break it down step by step:
### 1. **Embedding Step**
In this step, the input (like a question or text) is transformed into a vector representation using an embedding model. This process is usually deterministic, meaning that for the same input, the same embedding
SELECT
OBJECT_NAME(object_id) AS name
OBJECT_DEFINITION(object_id) AS Body
FROM
sys.procedures
WHERE
OBJECT_DEFINITION(object_id) LIKE '%ALEX%'
SELECT * FROM DOCVIEWER.INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_TYPE = 'PROCEDURE'
AND LEFT (ROUTINE_NAME, 3) IN ('sp_','usp_','usp')