This script conditionally loads an external JavaScript file only when certain UI elements (header/footer) are missing, helping avoid duplicate or conflicting scripts on pages that already include them.
```// Creates and injects a script tag into the page
const initialize = () => {
const script = document.createElement("script");
script.id = "footer-header-script"; // Unique ID to prevent duplicate injection
script.type = "text/javascript";
script.src = "https://www.example.com
function ConvertFrom-ByteArray {
[CmdletBinding()]
param (
[Alias('appid')]
[Parameter(Mandatory = $true, Position = 0, ValueFromPipeline = $true, ValueFromPipelineByPropertyName = $true)]
[byte[]]
$byteArray
)
begin {}
process {
try {
[System.Text.Encoding]::UTF8.GetString($byteArray)
}
catch {
throw $_
}
}
end {}
}
/**
* @param {number[]} nums
* @param {number} value
* @return {number}
*/
var findSmallestInteger = function(nums, value) {
// Step 1: Create a frequency map to count how many times each remainder appears
const freq = new Map();
for (let num of nums) {
// Normalize the remainder to always be non-negative
let mod = ((num % value) + value) % value;
// Count how many times each remainder appears
freq.set(mod, (freq.get(mod) || 0) + 1);
}
/
PLUGINS
β’ https://www.kadencewp.com/kadence-blocks/
β’ https://www.kadencewp.com/kadence-blocks/
# model.py
# ChildLangNet: Interaction Pattern Recognition for Early Childhood Language
# PyTorch >= 1.10
from typing import Optional, Tuple, Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------
# Small building blocks
# ---------------------------
class MLP(nn.Module):
def __init__(self, in_dim: int, hidden: int, out_dim: int, p: float = 0.1):
super().__init__()
self.net = nn.Sequential(
nn.Li
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define the Vocational Curriculum Alignment Network (VCAN)
class VCAN(nn.Module):
def __init__(self, curriculum_dim, enterprise_dim, hidden_dim, output_dim):
super(VCAN, self).__init__()
# Convolutional layer to process curriculum and enterprise data
self.curriculum_conv = nn.Conv1d(curriculum_dim, hidden_dim, kernel_size=3, padding=1)
self.enterprise_conv = nn.Conv1d(enterprise_d
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define the Temporal Skill Progression Network (TSPNet)
class TSPNet(nn.Module):
def __init__(self, skill_dim, hidden_dim, output_dim):
super(TSPNet, self).__init__()
# Recurrent neural network (LSTM) to model temporal dependencies in skill progression
self.lstm = nn.LSTM(skill_dim, hidden_dim, batch_first=True)
# Attention mechanism to focus on the most relevant
# model.py
# TourFusionNet: Multi-Source Data Fusion for Sports Tourism Preference Prediction
# Implements: modality encoders, hierarchical fusion (self & cross attention),
# graph propagation, and Adaptive Preference Integration Strategy (APIS).
# PyTorch >= 1.10 recommended.
from typing import Dict, Optional, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------------
# Utility blocks
# ----------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define the Harmonic Scene Integration Network (HSIN)
class HSIN(nn.Module):
def __init__(self, music_dim, scene_dim, embedding_dim, output_dim):
super(HSIN, self).__init__()
# Define the multi-modal encoder for music and scene data
self.music_encoder = nn.Sequential(
nn.Linear(music_dim, embedding_dim),
nn.ReLU(),
nn.Dropout(0.5)
)
### Commands / Description
Command | Description
---------|-----------
**Search** |
`/{earch_term}` | searches for `{search_term}` in the document
`?{search_term}` } | searches for `{search_term}` in the document
`CNTRL - D` | resets the cursor
**Substitute** | place cursor on the line
`:s/old/new/g` | every instance of `old` replaced with `new` if `g` or global is used
`:%s/old/new/gc` | `gc` means with prompt, search and replace WHILE typing
**Execute Terminal Commands** |
`:!{terminal comma
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define the Behavioral Recognition-Driven Quality Assessment Network (BRQAN)
class BRQAN(nn.Module):
def __init__(self, input_dim, feature_dim, output_dim):
super(BRQAN, self).__init__()
# Define the multimodal encoder for feature extraction
self.conv1 = nn.Conv2d(input_dim, 64, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, pa
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define the Cultural Embedding Transmission Network (CETNet)
class CETNet(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(CETNet, self).__init__()
# Define layers for encoding the motif and cultural memory
self.encoder = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.memory_embedding = nn.Linear(hidden_dim, hidden_dim) # Cultural memory upd
# models/structural_attention.py
from __future__ import annotations
from typing import Optional, Tuple
import torch
from torch import nn, Tensor
import torch.nn.functional as F
class StructuralAttentionConv(nn.Module):
r"""
Structural Attention message passing (single head) inspired by the paper's
formulations (attention over neighbors with separate W1/W2 and vector 'a').​:contentReference[oaicite:3]{index=3}
For a directed graph G=(V,E), we compute for edge u->v:
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiModalAttention(nn.Module):
def __init__(self, input_dims, attention_dims):
super(MultiModalAttention, self).__init__()
self.attention_layers = nn.ModuleList([
nn.Linear(input_dim, attention_dims) for input_dim in input_dims
])
self.attention_weights = nn.Parameter(torch.ones(len(input_dims)))
def forward(self, inputs):
attention_scores
# models/hape.py
from __future__ import annotations
import math
from typing import Optional, Tuple, Dict
import torch
from torch import nn, Tensor
import torch.nn.functional as F
class SinusoidalPositionalEncoding(nn.Module):
"""
Classic transformer-style fixed positional encoding.
Args:
dim: feature dimension
max_len: maximum sequence length supported
"""
def __init__(self, dim: int, max_len: int = 10_000):
super().__init__()
pe = torch.z
DECLARE
v_total_pkg NUMBER := 0;
v_success_pkg NUMBER := 0;
v_error_pkg NUMBER := 0;
v_total_prc NUMBER := 0;
v_success_prc NUMBER := 0;
v_error_prc NUMBER := 0;
v_total_fnc NUMBER := 0;
v_success_fnc NUMBER := 0;
v_error_fnc NUMBER := 0;
v_total_trg NUMBER := 0;
v_success_trg NUMBER := 0;
v_error_trg NUMBER := 0;
BEGIN
-- PACKAGES
FOR pkg IN (SELECT DISTINCT object_name FROM user_objects WHERE object