curl -fsSL https://cli.kiro.dev/install | bash/**
* @param {number[]} bits
* @return {boolean}
*/
var isOneBitCharacter = function(bits) {
// Start from the first bit
let i = 0;
// Traverse until the second-to-last bit
// (because the last bit is always 0, we want to see if it's consumed or not)
while (i < bits.length - 1) {
if (bits[i] === 1) {
// If we see a '1', it must form a two-bit character (10 or 11)
// So we skip TWO positions
i += 2;
} else {
/import os
from pathlib import Path
# -------------------------
# Define project name (main package)
# -------------------------
project_name = "src" # More descriptive than "src"
# -------------------------
# Define additional folders
# -------------------------
cicd_folder = "Github"
configs_folder = "configs"
data_folder = "data"
notebooks_folder = "notebooks"
static_css_folder = "static/css"
templates_folder = "templates"
tests_folder = "tests"
scripprint("Hello")
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain_classic.chains import ConversationChain
from langchain_classic.memory import ConversationBufferMemory
from langchain_classic.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_classic.schema import SystemMessage,HumanMessage
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY"
if not openai_api_key:
raise ValueError("O
## Messages
from langchain.core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
ToolMessage,
ToolMessageChunk,
FunctionMessage,
FunctionMessageChunk,
)
## Prompts
from langchain.core.prompts import (
PromptTemplate,
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
AIMessag🚀 Project Prompt: Build a Smart End-to-End Chatbot
🧩 Objective
Design and implement a robust, modular, and intelligent chatbot system using modern AI and web technologies. The chatbot should be capable of handling dynamic conversations, storing history, and providing a clean user interface.
🛠️ Tech Stack
🧠 Brain: LangChain + OpenAI (for LLM orchestration and prompt management)
⚙️ Backend: FastAPI (for serving the chatbot API)
💬 Frontend: Streamlit (for interactive chat UI)
🔒 Security: .import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load your dataset
df = pd.read_csv("your_data.csv") # Replace with your actual file
# Compute correlation matrix
corr_matrix = df.corr(numeric_only=True)
# Plot heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Heatmap")
plt.tight_layout()
plt.show()
final_df = pd.concat([
temperature_humidity[['time', 'day_temperature_C', 'day_humidity_percent',
'dayofweek_sin', 'dayofweek_cos',
'dayofmonth_sin', 'dayofmonth_cos',
'dayofyear_sin', 'dayofyear_cos']],
daily_counts[['COUNT']].rename(columns={'COUNT': 'complaint_count'})
], axis=1)import pandas as pd
# Sample data
data = {'temperature': [22, 23, 21, 24, 100, 22, 23, 25, 20, 21]}
df = pd.DataFrame(data)
# Function to remove outliers using IQR
def remove_outliers_iqr(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
# Call the function
df_clean = remove_outliers_iqr(dfimport matplotlib.pyplot as plt
import seaborn as sns
# List of columns to plot
columns_to_plot = [
'day_temperature_C', 'day_humidity_percent', 'complaint_count',
'dayofweek_sin', 'dayofweek_cos',
'dayofmonth_sin', 'dayofmonth_cos',
'dayofyear_sin', 'dayofyear_cos'
]
# Loop through each column and plot KDE
for col in columns_to_plot:
plt.figure(figsize=(10, 6))
sns.kdeplot(df[col], shade=True, color='purple')
plt.title(f'Density Plot of {col}')
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# Example dataset (replace this with your own DataFrame)
df = pd.DataFrame({
'temp_max_C': [25, 30, 35, 40],
'precip_mm': [0.0, 5.0, 10.0, 50.0],
'wind_speed_max_m_s': [2.5, 5.0, 7.5, 10.0],
'day_of_week_sin': [0.5, 0.7, -0.3, -0.9] # example of other feature
})
# Columns to scale
scale_cols = ['temp_max_C', 'precip_mm', 'wind_speed_max_m_s']
# Initialize scaler
scaler = MinMaxScaler()
# Fit import matplotlib.pyplot as plt
# Create box plot
plt.figure(figsize=(14, 6)) # Optional: enlarge canvas
plt.boxplot(new_df['Power_Load_kW'], patch_artist=True, boxprops=dict(facecolor='lightblue', color='blue'),
medianprops=dict(color='red'), whiskerprops=dict(color='black'),
capprops=dict(color='black'), flierprops=dict(marker='o', color='orange', alpha=0.5))
# Add title and labels
plt.title('Box Plot Example', fontsize=16)
plt.ylabel('Value', fontsize=14)
# Separate features (X) and target (y)
X = df.drop(columns=['complaint_count'])
y = df['complaint_count']
# Split data into train and test sets (80-20 split)
train_size = int(len(df) * 0.8)
y_train, y_test = y[:train_size], y[train_size:]
X_train, X_test = X[:train_size], X[train_size:]
# Print shapes
print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)
print("y_train shape:", y_train.shape)
print("y_test shape:", y_test.shape)
print(f"Training set size: {len(yimport numpy as np
from sklearn.model_selection import train_test_split
# ============================================
# TRAIN–TEST SPLIT
# ============================================
# Define features (X) and target (y)
X = new_df.drop(columns=['Power_Load_kW']) # Feature columns
y = new_df['Power_Load_kW'] # Target column
# ----- STEP 1: Create sequences for LSTM -----
# Create sequences for LSTM
def create_sequences(X, y, seq_length=7):
X_seq, y_seq plt.figure(figsize=(10, 6))
sns.kdeplot(filtered_data['Complaint_Count'], shade=True, color='purple')
plt.title('Density Plot of Complaint_Count')
plt.xlabel('Complaint_Count')
plt.ylabel('Density')
plt.grid(True)
plt.show()
----------------------------------------------------------------------------------------------------
import matplotlib.pyplot as plt
import seaborn as sns
# List of columns to plot
columns_to_plot = ['hour_sin', 'hour_cos', 'dayofweek_sin',
'dayofwee# Create scatter plot
plt.figure(figsize=(14, 6)) # Optional: enlarge canvas
plt.scatter(new_df['Power_Load_kW'], new_df['Temperature_C'], color='blue', marker='o', s=100, edgecolors='black')
# Add labels and title
plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.title('Simple Scatter Plot')
# Show plot
plt.grid(True)
plt.show()