Binary Search Tree Impl and Binary Search related algorithm. PreOrder: Traverse from Root to left sub-tree, then right sub-tree. InOrder: from smallest to largest item,which means it started from left-most leaf. PostOrder: leafs->left subRoot-> rightLeafs-> right subRoot --> Root ??Order: Traverse from Root to each sub-root(left then right).
function Node(data, left, right) {
this.data = data;
this.left = left;
this.right = right;
this.show = show;
}
function show() {
return this.data;
}
function BST() {
this.root = null;
this.insert = insert;
this.inOrder = inOrder;
this.preOrder = preOrder;
this.postOrder = postOrder;
this.getmin = getmin;
this.getmax = getmax;
this.find = find;
this.remove = remove;
this.removeNode = removeNode;
this.getSmallest = getSmallest;
}
function insert(data) {
var n = new Node(data, null, null);
if (this.root == null) {
this.root = n;
} else {
var current = this.root;
var parent;
while (true) {
parent = current;
if (data < current.data) {
current = current.left;
if (current == null) {
parent.left = n;
break;
}
} else {
current = current.right;
if (current == null) {
parent.right = n;
break;
}
}
}
}
}
function inOrder(node) {
if (!(node == null)) {
inOrder(node.left);
putstr(node.show() + " ");
inOrder(node.right);
}
}
function preOrder(node) {
if (!(node == null)) {
putstr(node.show() + " ");
preOrder(node.left);
preOrder(node.right);
}
}
function postOrder(node) {
if (!(node == null)) {
postOrder(node.left);
postOrder(node.right);
putstr(node.show() + " ");
}
}
function getmin() {
var current = this.root;
print("debug: " + current.data);
while (!(current.left == null)) {
current = current.left;
}
return current.data;
}
function getmax() {
var current = this.root;
while (!(current.right == null)) {
current = current.right;
}
return current.data;
}
function find(data) {
var current = this.root;
while (current.data != data) {
if (data < current.data) {
current = current.left;
} else {
current = current.right;
}
if (current == null) {
return null;
}
}
return current;
}
function getSmallest(node) {
if (node.left == null) {
return node;
} else {
return getSmallest(node.left);
}
}
function remove(data) {
this.root = removeNode(this.root, data);
}
function removeNode(node, data) {
if (node == null) {
return null;
}
// Reusable find function for recursion
if (data == node.data) {
// node has no children
if (node.left == null && node.right == null) {
return null;
}
// node has no left child
if (node.left == null) {
return node.right;
}
// node has no right child
if (node.right == null) {
return node.left;
}
// node has two children
var tempNode = getSmallest(node.right);
node.data = tempNode.data;
node.right = removeNode(node.right, tempNode.data);
return node;
} else if (data < node.data) {
// to find and update in leftsubtree
node.left = removeNode(node.left, data);
return node; // root node
} else {
// to find and update in rightsubtree
node.right = removeNode(node.right, data);
return node; // root node
}
}
var nums = new BST();
nums.insert(23);
nums.insert(45);
nums.insert(16);
nums.insert(37);
nums.insert(3);
nums.insert(99);
nums.insert(22);
/*print("Inorder traversal: ");
inOrder(nums.root);
print("\n");
print("Preorder traversal: ");
preOrder(nums.root);
print("\n");
print("Postorder traversal: ");
postOrder(nums.root);
print("\n");
var min = nums.getmin();
print("The minimum value of the BST is: " + min);
var max = nums.getmax();
print("The maximum value of the BST is: " + max);
inOrder(nums.root);
print("\n");
putstr("Enter a value to search for: ");
var value = parseInt(readline());
var found = nums.find(value);
if (found != null) {
print("Found " + value + " in the BST.");
}
else {
print(value + " was not found in the BST.");
}*/
inOrder(nums.root);
print("\n");
var num = parseInt(readline());
nums.remove(num);
inOrder(nums.root);
function Node(data, left, right) {
this.data = data;
this.left = left;
this.right = right;
this.show = show;
}
function show() {
return this.data;
}
function BST() {
this.root = null;
this.insert = insert;
this.inOrder = inOrder;
this.preOrder = preOrder;
this.postOrder = postOrder;
this.getmin = getmin;
this.getmax = getmax;
this.find = find;
this.remove = remove;
this.removeNode = removeNode;
this.getSmallest = getSmallest;
// exercises:
this.getNodeNumber = getNodeNumber;
this.getEdgeNumber = getEdgeNumber;
}
function insert(data) {
var n = new Node(data, null, null);
if (this.root == null) {
this.root = n;
} else {
var current = this.root;
var parent;
while (true) {
parent = current;
if (data < current.data) {
current = current.left;
if (current == null) {
parent.left = n;
break;
}
} else {
current = current.right;
if (current == null) {
parent.right = n;
break;
}
}
}
}
}
function inOrder(node) {
if (!(node == null)) {
inOrder(node.left);
putstr(node.show() + " ");
inOrder(node.right);
}
}
function preOrder(node) {
if (!(node == null)) {
putstr(node.show() + " ");
preOrder(node.left);
preOrder(node.right);
}
}
function postOrder(node) {
if (!(node == null)) {
postOrder(node.left);
postOrder(node.right);
putstr(node.show() + " ");
}
}
function getmin() {
var current = this.root;
print("debug: " + current.data);
while (!(current.left == null)) {
current = current.left;
}
return current.data;
}
function getmax() {
var current = this.root;
while (!(current.right == null)) {
current = current.right;
}
return current.data;
}
function find(data) {
var current = this.root;
while (current.data != data) {
if (data < current.data) {
current = current.left;
} else {
current = current.right;
}
if (current == null) {
return null;
}
}
return current;
}
function getSmallest(node) {
if (node.left == null) {
return node;
} else {
return getSmallest(node.left);
}
}
function remove(data) {
this.root = removeNode(this.root, data);
}
function removeNode(node, data) {
if (node == null) {
return null;
}
// Reusable find function for recursion
if (data == node.data) {
// node has no children
if (node.left == null && node.right == null) {
return null;
}
// node has no left child
if (node.left == null) {
return node.right;
}
// node has no right child
if (node.right == null) {
return node.left;
}
// node has two children
var tempNode = getSmallest(node.right);
node.data = tempNode.data;
node.right = removeNode(node.right, tempNode.data);
return node;
} else if (data < node.data) {
// to find and update in leftsubtree
node.left = removeNode(node.left, data);
return node; // root node
} else {
// to find and update in rightsubtree
node.right = removeNode(node.right, data);
return node; // root node
}
}
function getNodeNumber() {
var count = 0,
node = this.root;
(function addCount(node) {
if (node != null) {
count++;
addCount(node.left);
addCount(node.right);
}
})(node);
return count;
}
function getEdgeNumber() {
var nodeCount = this.getNodeNumber();
return nodeCount > 0 ? nodeCount - 1 : 0;
}
// test------------------------------------------------------------
var nums = new BST();
nums.insert(23);
nums.insert(45);
nums.insert(16);
nums.insert(37);
nums.insert(3);
nums.insert(99);
nums.insert(22);
nums.getNodeNumber(); // 7
struct Node{
int data;
Node *left, *right;
};
void preOrderPrint(Node *root)
{
print(root->name); //record root
if (root->left != NULL) preOrderPrint(root->left); //traverse left if exists
if (root->right != NULL) preOrderPrint(root->right);//traverse right if exists
}
void inOrderPrint(Node *root)
{
if (root.left != NULL) inOrderPrint(root->left); //traverse left if exists
print(root->name); //record root
if (root.right != NULL) inOrderPrint(root->right); //traverse right if exists
}
void postOrderPrint(Node *root)
{
if (root->left != NULL) postOrderPrint(root->left); //traverse left if exists
if (root->right != NULL) postOrderPrint(root->right);//traverse right if exists
print(root->name); //record root
}