a#-------------------------------------------------------------------------------
# Name: 01_ZikaReshape
# Purpose: Reshape Zika data into a tidy dataframe
# Author: Tim Essam, Ph.D.
# Created: 2016/09/13
# Owner: USAID GeoCenter | OakStream Systems, LLC
# License: MIT License
#-------------------------------------------------------------------------------
# Load required libraries
library(dplyr)
library(readxl) # to read excel data
library(tidyr)
d <- read_excel("Zika_awards.xlsx")
# Unlike in Stata, R can do this all in one pass.
Zika = d %>%
gather(key = "key", value = "Municpality", Muni1:Muni9, na.rm = TRUE) %>%
arrange(`Country `, Municpality) %>%
select(-key)
# Export the data back into ArcMap world format
write.csv(Zika, file = "Zika_awards_tidy.csv")
# # First, we need to select only the rows that have values for Muni2
# d_sub = d %>% filter(Muni2 != "NA") %>%
# select(-Muni1) %>%
# gather(key = "key", value = "Municipality", Muni2:Muni9, na.rm = TRUE) %>%
# select(-key)
#
# # Subset the main data frame to retain columns 1 - 4 or (Dept_Tpop - Muni1)
# d_main = d %>% select(Dept_Tpop:Muni1) %>%
# filter(Dept_Tpop != "NA") %>%
# rename(Municipality = Muni1)
#
# # Combine the two dataframes together by binding their rows (stacking / appending)
# Zika = bind_rows(d_main, d_sub) %>%
# arrange(`Country `, Municipality)
#
# # Export the data back into ArcMap world format
# write.csv(Zika, file = "Zika_awards_tidy.csv")