# each output is (batch size, feature dim, spatial dim)
[(k, v.data.shape) for k, v in solver.net.blobs.items()]
#output
#[('data', (64, 1, 28, 28)),
# ('label', (64,)),
# ('conv1', (64, 20, 24, 24)),
# ('pool1', (64, 20, 12, 12)),
# ('conv2', (64, 50, 8, 8)),
# ('pool2', (64, 50, 4, 4)),
# ('fc1', (64, 500)),
# ('score', (64, 10)),
# ('loss', ())]
# just print the weight sizes (we'll omit the biases)
[(k, v[0].data.shape) for k, v in solver.net.params.items()]
#output
#[('conv1', (20, 1, 5, 5)),
# ('conv2', (50, 20, 5, 5)),
# ('fc1', (500, 800)),
# ('score', (10, 500))]#