BiruLyu
8/16/2017 - 4:48 PM

329. Longest Increasing Path in a Matrix(#1).java

// Topological Sort Based Solution
// An Alternative Solution
public class Solution {
    private static final int[][] dir = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
    private int m, n;
    public int longestIncreasingPath(int[][] grid) {
        int m = grid.length;
        if (m == 0) return 0;
        int n = grid[0].length;
        // padding the matrix with zero as boundaries
        // assuming all positive integer, otherwise use INT_MIN as boundaries
        int[][] matrix = new int[m + 2][n + 2];
        for (int i = 0; i < m; ++i)
            System.arraycopy(grid[i], 0, matrix[i + 1], 1, n);

        // calculate outdegrees
        int[][] outdegree = new int[m + 2][n + 2];
        for (int i = 1; i <= m; ++i)
            for (int j = 1; j <= n; ++j)
                for (int[] d: dir)
                    if (matrix[i][j] < matrix[i + d[0]][j + d[1]])
                        outdegree[i][j]++;

        // find leaves who have zero out degree as the initial level
        n += 2;
        m += 2;
        List<int[]> leaves = new ArrayList<>();
        for (int i = 1; i < m - 1; ++i)
            for (int j = 1; j < n - 1; ++j)
                if (outdegree[i][j] == 0) leaves.add(new int[]{i, j});

        // remove leaves level by level in topological order
        int height = 0;
        while (!leaves.isEmpty()) {
            height++;
            List<int[]> newLeaves = new ArrayList<>();
            for (int[] node : leaves) {
                for (int[] d:dir) {
                    int x = node[0] + d[0], y = node[1] + d[1];
                    if (matrix[node[0]][node[1]] > matrix[x][y])
                        if (--outdegree[x][y] == 0)
                            newLeaves.add(new int[]{x, y});
                }
            }
            leaves = newLeaves;
        }
        return height;
    }
}
public class Solution {
    private static final int[][] dirs = new int[][] {{0,1}, {1, 0}, {0, -1}, {-1, 0}};
    private int dfs(int[][] matrix, int[][] dp, int r, int c) {
        if (dp[r][c] != 0) return dp[r][c];
        int m = matrix.length, n = matrix[0].length;
        for (int[] d : dirs) {
            int x = r + d[0], y = c + d[1];
            if (x >= 0 && y >= 0 && x < m && y < n && matrix[x][y] > matrix[r][c]) {
                dp[r][c] = Math.max(dp[r][c], dfs(matrix, dp, x, y));
            }
        }
        return ++dp[r][c];
    }
    public int longestIncreasingPath(int[][] matrix) {
        if (matrix == null || matrix.length < 1) return 0;
        int m = matrix.length, n = matrix[0].length;
        int[][] dp = new int[m][n];
        int res = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                res = Math.max(res, dfs(matrix, dp, i, j));
            }
        }
        return res;
    }
}
// Naive DFS Solution O(2^(m+n))
// Time Limit Exceeded

public class Solution {
  private static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
  private int m, n;

  public int longestIncreasingPath(int[][] matrix) {
      if (matrix.length == 0) return 0;
      m = matrix.length;
      n = matrix[0].length;
      int ans = 0;
      for (int i = 0; i < m; ++i)
          for (int j = 0; j < n; ++j)
              ans = Math.max(ans, dfs(matrix, i, j));
      return ans;
  }

  private int dfs(int[][] matrix, int i, int j) {
      int ans = 0;
      for (int[] d : dirs) {
          int x = i + d[0], y = j + d[1];
          if (0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j])
              ans = Math.max(ans, dfs(matrix, x, y));
      }
      return ++ans;
  }
}