class ASPP_module(nn.Module):
def __init__(self, inplanes, planes, rate):
super(ASPP_module, self).__init__()
if rate == 1: # 当rate为1的时候才是1*1的卷积
kernel_size = 1
padding = 0
else:
kernel_size = 3
padding = rate
self.atrous_convolution = nn.Conv2d(inplanes, planes, kernel_size=kernel_size, # 空洞卷积的padding和rate似乎是相等的
stride=1, padding=padding, dilation=rate, bias=False)
self.bn = nn.BatchNorm2d(planes)
self.relu = nn.ReLU()
self.__init_weight()
def forward(self, x):
x = self.atrous_convolution(x)
x = self.bn(x)
return self.relu(x)
def __init_weight(self): # 可能是因为空洞卷积也是定义在一个class里面,所以还需要一个参数初始化
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class ASPP(nn.Module):
def __init__(self, inplanes, planes, rates): # 根据rate的list来决定各个空洞卷积rate的
super(ASPP, self).__init__()
self.aspp1 = ASPP_module(inplanes, planes, rate=rates[0])
self.aspp2 = ASPP_module(inplanes, planes, rate=rates[1])
self.aspp3 = ASPP_module(inplanes, planes, rate=rates[2])
self.aspp4 = ASPP_module(inplanes, planes, rate=rates[3])
self.relu = nn.ReLU()
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(inplanes, planes, 1, stride=1, bias=False), # 一个1*1卷积来变通道
nn.BatchNorm2d(planes),
nn.ReLU()
)
self.conv1 = nn.Conv2d(planes*5, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
def forward(self, x):
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
# 上采样x5使得和x4的尺寸一样,x4的size的第二层开始模仿
x5 = F.upsample(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1) # 这些特征加在一起
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return x