pytorch version FLOPs_calculator
import torch
def print_model_parm_nums(model):
"""
Used for calculate models' parameter number.
:param model:
:return:
"""
total = sum([param.nelement() for param in model.parameters()])
print(' + Number of params: %.2fM' % (total / 1e6))
return ' + Number of params: %.2fM' % (total / 1e6)
def print_disc_model_flops(model, inp_h=32, inp_w=32, multiply_adds=False):
"""
Used for calculate the FLOPs of discriminative model.
:param model: nn.Module object.
:param inp_h: The height of the input image.
:param inp_w:The width of the input image.
:param multiply_adds: enable multiply_adds or not.
:return:
"""
print('Using input shape: %d * %d * 3' % (inp_h, inp_w))
list_conv = []
list_linear = []
list_bn = []
list_relu = []
list_pooling = []
def conv_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (
2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_conv.append(flops)
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
def bn_hook(self, input, output):
list_bn.append(input[0].nelement())
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())
def pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling.append(flops)
def adaptive_pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
if output_height == 1 and output_width == 1:
kernel_ops = input_height * input_width
else:
raise NotImplementedError
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm2d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU) or isinstance(net, torch.nn.Sigmoid) or isinstance(net, torch.nn.PReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d):
net.register_forward_hook(pooling_hook)
if isinstance(net, torch.nn.AdaptiveAvgPool2d):
net.register_forward_hook(adaptive_pooling_hook)
return
for c in childrens:
foo(c)
foo(model)
input = Variable(torch.rand(3, inp_h, inp_w).unsqueeze(0), requires_grad=False)
with torch.no_grad():
out = model(input)
del out
total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling))
print(' + Number of FLOPs: %.2fG' % (total_flops / 1e9))
def print_gen_model_flops(model, latent_dim, multiply_adds=False):
"""
Used for calculate the FLOPs of generative model.
:param model: nn.Module object.
:param latent_dim: The latent dimension of the input noise.
:param multiply_adds: enable multiply_adds or not.
:return:
"""
print('Using input latent vector of dimension %d' % latent_dim)
list_conv = []
list_linear = []
list_bn = []
list_relu = []
list_pooling = []
def conv_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (
2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_conv.append(flops)
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
def bn_hook(self, input, output):
list_bn.append(input[0].nelement())
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())
def pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling.append(flops)
def adaptive_pooling_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
if output_height == 1 and output_width == 1:
kernel_ops = input_height * input_width
else:
raise NotImplementedError
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm2d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU) or isinstance(net, torch.nn.Sigmoid) or isinstance(net, torch.nn.PReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d):
net.register_forward_hook(pooling_hook)
if isinstance(net, torch.nn.AdaptiveAvgPool2d):
net.register_forward_hook(adaptive_pooling_hook)
return
for c in childrens:
foo(c)
foo(model)
input = Variable(
torch.cuda.FloatTensor(np.random.normal(0, 1, (1, latent_dim))), requires_grad=False)
with torch.no_grad():
out = model(input)
del out
total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling))
print(' + Number of FLOPs: %.2fG' % (total_flops / 1e9))