import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (7, 7)
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.utils import np_utils
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# https://github.com/wxs/keras-mnist-tutorial/blob/master/MNIST%20in%20Keras.ipynb
if __name__ == "__main__":
nb_classes = 10
(X_train, y_train), (X_test, y_test) = mnist.load_data()
print("X_train original shape", X_train.shape)
print("y_train original shape", y_train.shape)
for i in range(9):
plt.subplot(3, 3, i + 1)
plt.imshow(X_train[i], cmap='gray', interpolation='none')
plt.title("Class {}".format(y_train[i]))
plt.show()
X_train = X_train.reshape(60000, 784).astype('float32')
X_test = X_test.reshape(10000, 784).astype('float32')
X_train /= 255
X_test /= 255
print("Training matrix shape", X_train.shape)
print("Testing matrix shape", X_test.shape)
y_train_ohe = np_utils.to_categorical(y_train, nb_classes)
y_test_ohe = np_utils.to_categorical(y_test, nb_classes)
print("y_train_ohe shape", y_train_ohe.shape)
model = Sequential()
model.add(Dense(512, input_shape=(784, )))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train_ohe, batch_size=128, nb_epoch=4,
verbose=1, validation_data=(X_test, y_test_ohe))
score = model.evaluate(X_test, y_test_ohe, verbose=1)
print("Test score: ", score[0]);
print("Test accuracy: ", score[1]);
predicted_classes = model.predict_classes(X_test)
correct_indices = np.nonzero(predicted_classes == y_test)[0]
incorrect_indices = np.nonzero(predicted_classes != y_test)[0]
plt.figure()
for i, correct in enumerate(correct_indices[:9]):
plt.subplot(3, 3, i + 1)
plt.imshow(X_test[correct].reshape(28, 28), cmap='gray', interpolation='none')
plt.title("Predicted {}, Class {}".format(predicted_classes[correct], y_test[correct]))
plt.figure()
for i, incorrect in enumerate(incorrect_indices[:9]):
plt.subplot(3, 3, i + 1)
plt.imshow(X_test[incorrect].reshape(28, 28), cmap='gray', interpolation='none')
plt.title("Predicted {}, Class {}".format(predicted_classes[incorrect], y_test[incorrect]))
plt.show()