Scaling features
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# Standarize the features
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
#adding column names again after normalizing
X_imputed_df = pd.DataFrame(X_imputed, columns = X_train.columns)
####################################
#fitting and transforming in the same step keping other columns in place ###best
df_feature.ix[:,2:] = scaler.fit_transform(df_feature.ix[:,2:])