payal-kothari
8/28/2017 - 8:41 PM

Bipartite using BFS

Bipartite using BFS

// Java program to find out whether a given graph is Bipartite or not
import java.util.*;
import java.lang.*;
import java.io.*;
 
class Bipartite
{
    final static int V = 4; // No. of Vertices
 
    // This function returns true if graph G[V][V] is Bipartite, else false
    boolean isBipartite(int G[][],int src)
    {
        // Create a color array to store colors assigned to all veritces.
        // Vertex number is used as index in this array. The value '-1'
        // of  colorArr[i] is used to indicate that no color is assigned
        // to vertex 'i'.  The value 1 is used to indicate first color
        // is assigned and value 0 indicates second color is assigned.
        int colorArr[] = new int[V];
        for (int i=0; i<V; ++i)
            colorArr[i] = -1;
 
        // Assign first color to source
        colorArr[src] = 1;
 
        // Create a queue (FIFO) of vertex numbers and enqueue
        // source vertex for BFS traversal
        LinkedList<Integer>q = new LinkedList<Integer>();
        q.add(src);
 
        // Run while there are vertices in queue (Similar to BFS)
        while (q.size() != 0)
        {
            // Dequeue a vertex from queue
            int u = q.poll();
 
            // Return false if there is a self-loop 
            if (G[u][u] == 1)
                return false;  
 
            // Find all non-colored adjacent vertices
            for (int v=0; v<V; ++v)
            {
                // An edge from u to v exists and destination v is
                // not colored
                if (G[u][v]==1 && colorArr[v]==-1)
                {
                    // Assign alternate color to this adjacent v of u
                    colorArr[v] = 1-colorArr[u];
                    q.add(v);
                }
 
                // An edge from u to v exists and destination v is
                // colored with same color as u
                else if (G[u][v]==1 && colorArr[v]==colorArr[u])
                    return false;
            }
        }
        // If we reach here, then all adjacent vertices can
        //  be colored with alternate color
        return true;
    }
 
    // Driver program to test above function
    public static void main (String[] args)
    {
        int G[][] = {{0, 1, 0, 1},
            {1, 0, 1, 0},
            {0, 1, 0, 1},
            {1, 0, 1, 0}
        };
        Bipartite b = new Bipartite();
        if (b.isBipartite(G, 0))
           System.out.println("Yes");
        else
           System.out.println("No");
    }
}