Boltzmann Factor Example
Written by Andy, 2015/4/22 本來想寫Boltzmann Factor是怎麼導出來的,但是...太複雜了而且沒必要,就...。
Boltzmann Factor, $e^{-\frac{E}{k_B T}}$, is
To calculate the average energy of a system, one should use the concept of expectation. Or you can think it of a normalize process. The general expression is $$ \left\langle E \right\rangle = \frac{ \int E(\tau) e^{-\frac{E(\tau)}{k_B T}} d\tau }{ \int e^{-\frac{E(\tau)}{k_B T}} d\tau }. $$ The involved parameter, $\tau$, is a $\mathbb{R}^n$ vector that indicate the property of a particle with interest Integrate in all microstates.
A system composed of Helium, for example, is a simple system. The energy of a single atom is determined with $$E(\tau)=\frac{1}{2m} \left(p_x2+p_y2+p_z^2\right).$$ Adding its position, there are $6$ parameters in total, thus, $$d \tau = dx,dy,dz,dp_x,dp_y,dp_z$$
As you can see later, the average of each parameter is symmetric, which means them can be separately calculated. Surprisingly, they are all equal. Here we just calculate it altogether: $$ \left\langle E \right\rangle = \frac{ \iiint!!\iiint \frac{1}{2m} \left(p_x2+p_y2+p_z^2\right) e{-\frac{p_x2+p_y2+p_z2}{2mk_BT}},dx,dy,dz,dp_x,dp_y,dp_z }{ \iiint!!\iiint e{-\frac{p_x2+p_y2+p_z2}{2mk_BT}},dx,dy,dz,dp_x,dp_y,dp_z } $$ To start with, use the following fact to split the tedious integrals,
$\iint f(x)g(y),dy,dx=\left(\int f(x),dx\right) \left(\int g(y),dy\right)$
And we end up with three integrals eliminated, $$ \frac{ \int \frac{p_x^2}{2m} e{-\frac{p_x2}{2mk_B T}}dp_x, \int e{-\frac{p_y2}{2mk_B T}}dp_y, \int e{-\frac{p_z2}{2mk_B T}}dp_z+\ \int e{-\frac{p_x2}{2mk_B T}}dp_x, \int \frac{p_y^2}{2m} e{-\frac{p_y2}{2mk_B T}}dp_y, \int e{-\frac{p_z2}{2mk_B T}}dp_z+\ \int e{-\frac{p_x2}{2mk_B T}}dp_x, \int e{-\frac{p_y2}{2mk_B T}}dp_y, \int \frac{p_z^2}{2m} e{-\frac{p_z2}{2mk_B T}}dp_z }{ e{-\frac{p_x2}{2mk_B T}}dp_x, e{-\frac{p_y2}{2mk_B T}}dp_y, e{-\frac{p_z2}{2mk_B T}}dp_z } $$
This is a huge fraction! Hopefully we find more terms to eliminate. We write $$\begin{split} \mathcal{E}{1}&=\int e{-\frac{u2}{2mk_B T}},du & \mathrm{and}\ \mathcal{E}{u^2}&=\int u2e{-\frac{u^2}{2mk_B T}},du. \end{split}$$ (Better notation is welcome)
Continue, keeping in mind that which variable inside integral are independent of its value, $$ \frac{ \frac{1}{2m} \left(\mathcal{E}{u^2},\mathcal{E}{1},\mathcal{E}{1} + \mathcal{E}{1},\mathcal{E}{u^2},\mathcal{E}{1} + \mathcal{E}{1},\mathcal{E}{1},\mathcal{E}{u^2} \right) }{ \left( \mathcal{E}{1} \right)^3 } \ = \frac{3}{2m},\frac{\mathcal{E}{u^2}}{\mathcal{E}{1}} $$
$$ \begin{split} & A>0, \ & \int_0^\infty e{-Au2},du & = \sqrt{\frac{\pi}{4A}}, \ & \int_0^\infty u^2 e{-Au2},du & = \sqrt{\frac{\pi}{16A^3}}. \end{split} $$
So, eventually, $$ \frac{\mathcal{E}{u^2}}{\mathcal{E}{1}} = \frac{1}{2\frac{1}{2mk_B T}}=m k_B T, \ \left\langle E \right\rangle=\frac{3}{2m},\frac{\mathcal{E}{u^2}}{\mathcal{E}{1}}=\frac{3}{2}k_B T. $$
Written with StackEdit.