Correlate and plot test statistics (pvalues) on a -log10 scale. Useful for comparing two similar analyses.
/home/laramie/CLEANED_DATA/EXTERNAL_DATA/MIRECC6_Duke/duke_gwas_WH/12_15_15/DUKE_WH_model3_w_A2_danerFORMAT
grep -v NA MIRE_eur_analysis1_mf > MIRE_eur_analysis1_mf_nona
adam <- read.table('MIRE_eur_analysis1_mf_nona', nr=10000000,stringsAsFactors=F,header=T)
lara <- read.table('/home/laramie/CLEANED_DATA/EXTERNAL_DATA/MIRECC6_Duke/duke_gwas_WH/12_15_15/DUKE_WH_model3_w_A2_danerFORMAT', nr=8300000,stringsAsFactors=F,header=T)
lara$p <- 2*pnorm(abs(log(lara$OR)/lara$SE),lower.tail=F)
rescor <- merge(adam,lara,by="SNP")
cor.test(-log10(rescor$P),-log10(rescor$p))
png("correlations_me_larame.png")
plot(-log10(rescor$P),-log10(rescor$p))
dev.off()
cor.test(-log10(rescor$OR.x),-log10(rescor$OR.y))
rescor2 <- rescor[order(rescor$P),]
unadj_filtered <- sort(adam$P)
UNADJ <- -log(unadj_filtered,10)
QQ <- -log(ppoints(length(UNADJ)),10)
png('mirecc_output_qqplot.png')
par(bty='l')
chisqs <- qchisq(unadj_filtered,1,lower.tail=F)
median_chisq <- median(chisqs,na.rm=T)
GCfactor=median_chisq/.456
plot(QQ, UNADJ, xlab='', ylab='', col='blue', cex=1.3, cex.axis=1.2, cex.lab=1.5,ylim=c(0,8.5),pch=20)
abline(0,1,col='red', lwd=2)
title(xlab='Expected -log10(p)', ylab='Observed -log10(p)', cex.lab=1.5)
legend('topleft', paste('GC Lambda =', GCfactor), bty='n', cex=1.5, xjust=1)
dev.off()