ckdanny
2/27/2020 - 2:57 PM

Randomly generate a time-series dataframe

Randomly generate a time-series dataframe

import pandas as pd
import numpy as np

if __name__ == '__main__':
    start = '2018-01-01'
    end = '2018-03-01'
    
    # df_test = pd.DataFrame({'timestamp': pd.date_range(start, end, freq='T'), 'point': 2})
    #
    row_num = 60000
    for i in range(0,6):
        arr = np.array([np.random.randint(1, 11, row_num ), np.random.randint(1, 110, row_num)])
        df = pd.DataFrame(arr.T, columns=['xAxis', 'CoP'])
        print(df)
        df.to_pickle("sample_{}_statBySize_{}.pkl".format(row_num, i))