/*
This code takes a 2D transformation matrix described as a one-dimensional array
(in column order, top to bottom and left to right) and decomposes it using the dojo
matrix library. This input matrix should produce a 45-deg X skew:
1 1 0
0 1 0
0 0 1
The output of decompose() looks like this:
{
angle1: -58.282525588538995,
angle2: 31.71747441146101,
dx: 0,
dy: 0,
sx: 1.6180339887498953,
sy: 0.618033988749895
}
So two rotations and two scales presumably produce the skew, but there's no obvious way
to go from this to the 45-deg angle that could then be used in CSS3 skew transform, like
transform:skew(45deg);
*/
dojo.require("dojox.gfx.decompose");
function decompose(
inMatrix)
{
var matrix = new dojox.gfx.matrix.Matrix2D({
xx: inMatrix[0],
yx: inMatrix[1],
xy: inMatrix[3],
yy: inMatrix[4],
dx: inMatrix[6],
dy: inMatrix[7]
});
var decomposed = dojox.gfx.decompose(matrix);
decomposed.angle1 *= 180 / Math.PI;
decomposed.angle2 *= 180 / Math.PI;
return decomposed;
}
log(decompose([1, 0, 0, 1, 1, 0, 0, 0, 1]));
/*
Here's Aaron's ActionScript decomposition code, converted to JS so it can run in
Fireworks. You can do something like asDecompose(fw.selection[0].transform.matrix) to
decompose the transform of the current selection.
*/
function Point(x, y)
{
return { x: x, y: y };
}
function matrixTransforms(matrix) {
// calculate delta transform point
var px = deltaTransformPoint(matrix, new Point(0, 1));
var py = deltaTransformPoint(matrix, new Point(1, 0));
// calculate skew
var skewX = ((180 / Math.PI) * Math.atan2(px.y, px.x) - 90);
var skewY = ((180 / Math.PI) * Math.atan2(py.y, py.x));
return {
translateX:matrix.tx,
translateY:matrix.ty,
scaleX:Math.sqrt(matrix.a * matrix.a + matrix.b * matrix.b),
scaleY:Math.sqrt(matrix.c * matrix.c + matrix.d * matrix.d),
skewX:skewX,
skewY:skewY,
rotation:skewX // rotation is the same as skew x
}
}
function deltaTransformPoint(matrix, point) {
//return matrix.deltaTransformPoint(point);
var dx = point.x * matrix.a + point.y * matrix.c + 0;
var dy = point.x * matrix.b + point.y * matrix.d + 0;
return new Point(dx, dy);
}
function asDecompose(
inMatrix)
{
var matrix = {
a: inMatrix[0],
c: inMatrix[1],
b: inMatrix[3],
d: inMatrix[4],
tx: inMatrix[6],
ty: inMatrix[7]
};
return matrixTransforms(matrix);
}