yasuhirohoshino
9/29/2016 - 7:59 AM

glsl noise function https://github.com/ashima/webgl-noise

//
// Description : Array and textureless GLSL 2D/3D/4D simplex
//               noise functions.
//      Author : Ian McEwan, Ashima Arts.
//  Maintainer : ijm
//     Lastmod : 20110822 (ijm)
//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
//               Distributed under the MIT License. See LICENSE file.
//               https://github.com/ashima/webgl-noise
//

float mod289(float x) {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec2 mod289(vec2 x) {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec3 mod289(vec3 x) {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 mod289(vec4 x) {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
}

float permute(float x) {
    return mod289(((x*34.0)+1.0)*x);
}

vec3 permute(vec3 x) {
    return mod289(((x*34.0)+1.0)*x);
}

vec4 permute(vec4 x) {
    return mod289(((x*34.0)+1.0)*x);
}

float taylorInvSqrt(float r)
{
    return 1.79284291400159 - 0.85373472095314 * r;
}

vec4 taylorInvSqrt(vec4 r)
{
    return 1.79284291400159 - 0.85373472095314 * r;
}

float snoise(vec2 v)
{
    const vec4 C = vec4(0.211324865405187,  // (3.0-sqrt(3.0))/6.0
                        0.366025403784439,  // 0.5*(sqrt(3.0)-1.0)
                        -0.577350269189626,  // -1.0 + 2.0 * C.x
                        0.024390243902439); // 1.0 / 41.0
    // First corner
    vec2 i  = floor(v + dot(v, C.yy) );
    vec2 x0 = v -   i + dot(i, C.xx);
    
    // Other corners
    vec2 i1;
    //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
    //i1.y = 1.0 - i1.x;
    i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
    // x0 = x0 - 0.0 + 0.0 * C.xx ;
    // x1 = x0 - i1 + 1.0 * C.xx ;
    // x2 = x0 - 1.0 + 2.0 * C.xx ;
    vec4 x12 = x0.xyxy + C.xxzz;
    x12.xy -= i1;
    
    // Permutations
    i = mod289(i); // Avoid truncation effects in permutation
    vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 ))
                     + i.x + vec3(0.0, i1.x, 1.0 ));
    
    vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0);
    m = m*m ;
    m = m*m ;
    
    // Gradients: 41 points uniformly over a line, mapped onto a diamond.
    // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
    
    vec3 x = 2.0 * fract(p * C.www) - 1.0;
    vec3 h = abs(x) - 0.5;
    vec3 ox = floor(x + 0.5);
    vec3 a0 = x - ox;
    
    // Normalise gradients implicitly by scaling m
    // Approximation of: m *= inversesqrt( a0*a0 + h*h );
    m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );
    
    // Compute final noise value at P
    vec3 g;
    g.x  = a0.x  * x0.x  + h.x  * x0.y;
    g.yz = a0.yz * x12.xz + h.yz * x12.yw;
    return 130.0 * dot(m, g);
}

float snoise(vec3 v)
{
    const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
    const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);
    
    // First corner
    vec3 i  = floor(v + dot(v, C.yyy) );
    vec3 x0 =   v - i + dot(i, C.xxx) ;
    
    // Other corners
    vec3 g = step(x0.yzx, x0.xyz);
    vec3 l = 1.0 - g;
    vec3 i1 = min( g.xyz, l.zxy );
    vec3 i2 = max( g.xyz, l.zxy );
    
    //   x0 = x0 - 0.0 + 0.0 * C.xxx;
    //   x1 = x0 - i1  + 1.0 * C.xxx;
    //   x2 = x0 - i2  + 2.0 * C.xxx;
    //   x3 = x0 - 1.0 + 3.0 * C.xxx;
    vec3 x1 = x0 - i1 + C.xxx;
    vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
    vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y
    
    // Permutations
    i = mod289(i);
    vec4 p = permute( permute( permute(
                                       i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
                              + i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
                     + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
    
    // Gradients: 7x7 points over a square, mapped onto an octahedron.
    // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
    float n_ = 0.142857142857; // 1.0/7.0
    vec3  ns = n_ * D.wyz - D.xzx;
    
    vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)
    
    vec4 x_ = floor(j * ns.z);
    vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)
    
    vec4 x = x_ *ns.x + ns.yyyy;
    vec4 y = y_ *ns.x + ns.yyyy;
    vec4 h = 1.0 - abs(x) - abs(y);
    
    vec4 b0 = vec4( x.xy, y.xy );
    vec4 b1 = vec4( x.zw, y.zw );
    
    //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
    //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
    vec4 s0 = floor(b0)*2.0 + 1.0;
    vec4 s1 = floor(b1)*2.0 + 1.0;
    vec4 sh = -step(h, vec4(0.0));
    
    vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
    vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
    
    vec3 p0 = vec3(a0.xy,h.x);
    vec3 p1 = vec3(a0.zw,h.y);
    vec3 p2 = vec3(a1.xy,h.z);
    vec3 p3 = vec3(a1.zw,h.w);
    
    //Normalise gradients
    vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
    p0 *= norm.x;
    p1 *= norm.y;
    p2 *= norm.z;
    p3 *= norm.w;
    
    // Mix final noise value
    vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
    m = m * m;
    return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
                                 dot(p2,x2), dot(p3,x3) ) );
}

vec4 grad4(float j, vec4 ip)
{
    const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
    vec4 p,s;
    
    p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
    p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
    s = vec4(lessThan(p, vec4(0.0)));
    p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
    
    return p;
}

// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451

float snoise(vec4 v)
{
    const vec4  C = vec4( 0.138196601125011,  // (5 - sqrt(5))/20  G4
                         0.276393202250021,  // 2 * G4
                         0.414589803375032,  // 3 * G4
                         -0.447213595499958); // -1 + 4 * G4
    
    // First corner
    vec4 i  = floor(v + dot(v, vec4(F4)) );
    vec4 x0 = v -   i + dot(i, C.xxxx);
    
    // Other corners
    
    // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
    vec4 i0;
    vec3 isX = step( x0.yzw, x0.xxx );
    vec3 isYZ = step( x0.zww, x0.yyz );
    //  i0.x = dot( isX, vec3( 1.0 ) );
    i0.x = isX.x + isX.y + isX.z;
    i0.yzw = 1.0 - isX;
    //  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
    i0.y += isYZ.x + isYZ.y;
    i0.zw += 1.0 - isYZ.xy;
    i0.z += isYZ.z;
    i0.w += 1.0 - isYZ.z;
    
    // i0 now contains the unique values 0,1,2,3 in each channel
    vec4 i3 = clamp( i0, 0.0, 1.0 );
    vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
    vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
    
    //  x0 = x0 - 0.0 + 0.0 * C.xxxx
    //  x1 = x0 - i1  + 1.0 * C.xxxx
    //  x2 = x0 - i2  + 2.0 * C.xxxx
    //  x3 = x0 - i3  + 3.0 * C.xxxx
    //  x4 = x0 - 1.0 + 4.0 * C.xxxx
    vec4 x1 = x0 - i1 + C.xxxx;
    vec4 x2 = x0 - i2 + C.yyyy;
    vec4 x3 = x0 - i3 + C.zzzz;
    vec4 x4 = x0 + C.wwww;
    
    // Permutations
    i = mod289(i);
    float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
    vec4 j1 = permute( permute( permute( permute (
                                                  i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
                                        + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
                               + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
                      + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
    
    // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
    // 7*7*6 = 294, which is close to the ring size 17*17 = 289.
    vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
    
    vec4 p0 = grad4(j0,   ip);
    vec4 p1 = grad4(j1.x, ip);
    vec4 p2 = grad4(j1.y, ip);
    vec4 p3 = grad4(j1.z, ip);
    vec4 p4 = grad4(j1.w, ip);
    
    // Normalise gradients
    vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
    p0 *= norm.x;
    p1 *= norm.y;
    p2 *= norm.z;
    p3 *= norm.w;
    p4 *= taylorInvSqrt(dot(p4,p4));
    
    // Mix contributions from the five corners
    vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
    vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
    m0 = m0 * m0;
    m1 = m1 * m1;
    return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
                   + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
    
}