# import images
import os
import cv2
images = []
labels = []
for img in os.listdir('../'):
# import only images
if img[-3:] == 'jpg':
# resize to the same size used in the training set
images.append(cv2.resize(plt.imread('../' + img), (32,32)))
# the name of the images is the number corresponding to its label
# so img[:2] is the label, like 01, or 35
labels.append(int(img[:2]))
# create X_new and y_new
X_new = np.array(images)
y_new = np.array(labels)
print(X_new.shape, y_new.shape)
# predicting for new labels
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
softmax_pred = tf.nn.top_k(tf.nn.softmax(logits), 5)
feed_dict = {
x: X_new,
y: y_new
}
classification = sess.run(softmax_pred, feed_dict)
# printing the probability distribution
for i in range(len(classification.values)):
print(list(zip(classification.values[i], classification.indices[i])))
# print the correct labels for each, to compare with the probability distribution
print(y_new)