# instalar virtualenv
sudo apt-get install python-virtualenv
// 定义全局对象,兼容浏览器(window)和Node.js(global)
const globalScope = typeof window !== 'undefined' ? window : globalThis;
/**
* 批量环境代理函数 (Hook)
* @param {Array<string>} proxy_array - 需要代理的对象名称数组,例如 ['window', 'location']
*/
function batchProxy(proxy_array) {
proxy_array.forEach(name => {
// 1. 获取当前环境中的对象,如果不存在则初始化为空对象
let target = globalScope[name];
if (!target) {
target = {};
globalScope[name] = target; // 将新建的空对象挂载到全局
}
import gc
## --> here script content or loop-iteration
# clean memory
gc.collect()
______JEANSON ANCHETA______
Stop Paying for Fluff. Start Getting Results.
🌍
🛡️ Verified • HQ Access • Fast Delivery
💬 DM for escrow or direct 🔥
WESTERN UNION / MONEYGRAM / BANK LOGINS / BANK DROP/ PAYPAL TRANSFER GLOBAL / CASHAPP / ZELLE / APPLE PAY / SKRILL / VENMO TRANSFER
©2025 Telegram: @JeansonTooL
https://t.me/+2__ynBAtFP00M2Fk
https://t.me/+CsF2t7HvV_ljMmU8
Hello fam, offering HQ services 💻💸 — got WU pluggz, bank logs w/ fullz, PayPal jobz, Skrill fli・[Shopify無料テーマ「Dawn」のECサイト参考事例!日本企業の活用例を業界別にご紹介](https://lp.makegift.me/blog/2152/)
・[[Shopify] ポリシーページをカスタマイズする方法(Debutテーマ)](https://torublog.com/shopify-policy-pages-customize/)
select distinct count(chain_id) as count_wapol, substring(date_of_crash::text,1,4) as crash_date from demog_status ds join chain_main cm on ds.cur_chain=cm.chain_id join crash_wapoldata cw on substring(ds.lpnot,1,11)=cw.lpno where lset_id = 50 group by 2 order by 2;
select distinct count(chain_id) as count_crash_icwa, substring(ci.date_of_crash::text,1,4) as date_of_crash from demog_status ds join chain_main cm on ds.cur_chain=cm.chain_id join crash_icwadata ci on substring(ds.lpnot,1,11)=ci.lpApplication
Selection Tool V
Track Select Backward Tool ⇧+A
Track Select Forward Tool A
Ripple Edit Tool B
Rolling Edit Tool N
Rate Stretch Tool R
Razor Tool C
Slip Tool Y
Slide Tool U
Pen Tool P
Hand Tool H
Zoom Tool Z
Type Tool T
Premiere Pro
Keyboard Shortcuts... ⌥+⌘+K
Quit Premiere Pro ⌘+Q
File
New
Project... ⌥+⌘+N
Sequence... ⌘+N
Bin ⌘+/
Open Project... ⌘+O
Close ⌘+W
Close Project ⇧+⌘+W
Save ⌘+S
Save As... ⇧+⌘+S
/**
* @param {number[]} nums
* @param {number} original
* @return {number}
*/
var findFinalValue = function(nums, original) {
// Step 1: Convert nums into a Set for faster lookups.
// Why? Searching in an array is O(n), but in a Set it's O(1).
let numSet = new Set(nums);
// Step 2: Keep checking if 'original' exists in the set.
// If it does, double it and repeat.
while (numSet.has(original)) {
// Found 'original' in nums, so double it
original = orig# InstallMapMissingComponentKey
### Definition
|||
|-|-|
|hKey|HKEY\_LOCAL\_MACHINE|
|subKey|\\COMPONENTS\\DerivedData\\VersionedIndex\\_[ServicingStackVersion]_[^1]\\ComponentFamilies\\_[ComponentName\_NonVersioned]_[^2]\\v!_[ComponentVersion]_[^3]|
|Kind|REG_BINARY|
|Name|InstallMapMissingComponentKey|
|Data|00|
### Purpose
This value is written to a ComponentFamilies key when the install map cannot locate the corresponding version information under the Components key.
### Example
```text
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Dict, Tuple
# ------------------------------------------------------------
# Helper modules
# ------------------------------------------------------------
class MLP(nn.Module):
def __init__(self, dim, hidden, out, drop=0.1):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden),
nn.GELU(),
nn.Dropout(drop),
from __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Dict, Any, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------------------------------
# Data containers
# ---------------------------------------------------------------------------
@dataclass
class FourthClassroomBatch:
"""
Container for a batch in the Fourth Classroom setting.
Sfrom __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------------------------------
# Utility modules
# ---------------------------------------------------------------------------
class MLP(nn.Module):
"""Simple multi-layer perceptron with LayerNorm and residual option."""
def __init__(
---
# ✔️ 4. model.py(较长、结构清晰的代码,无需真实可运行)
```python
"""
model.py
Implementation of the Lexical-Semantic Alignment Network (LSAN)
and supporting components inspired by the research framework.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------
# Embedding Modules
# ---------------------------------------------------
class LexicalEmbedding(nn.Module):
"""Basic word embedding layer."""
def from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, Any, Optional, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------------------------------
# Data containers
# ---------------------------------------------------------------------------
@dataclass
class CreditGraphBatch:
"""
Container for a mini-batch of fiscal knowledge graph data.
Simport torch
import torch.nn as nn
import torch.nn.functional as F
class CoefficientDecouplingLayer(nn.Module):
"""
Implements the coefficient decoupling strategy:
y_hat = γ * (s^T θ_s) + (1 - γ) * (u^T θ_u)
"""
def __init__(self, dim_sensitive, dim_nonsensitive):
super().__init__()
self.theta_s = nn.Parameter(torch.randn(dim_sensitive))
self.theta_u = nn.Parameter(torch.randn(dim_nonsensitive))
self.gamma = nn.Parameter(torch.tfrom __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Tuple, Dict, Any
import torch
import torch.nn as nn
import torch.nn.functional as F
# ---------------------------------------------------------------------------
# Utility dataclasses
# ---------------------------------------------------------------------------
@dataclass
class GridBatch:
"""
Container for a mini-batch of grid data.
Shapes (typical):
x