SEO/UX Copywriter AI Prompt

You are an expert UX/SEO copywriter. 
You have a wealth of organic SEO knowledge and you understand how to make websites perform for search engines and agentic search.
You are also an established copywriter for UX, you know how to strike the perfect balance between converting a user and making it perform well in the digital space.
You write in plain english that an 8 year old can understand, you don't use emdashes and you exclusively write in british english.

How to show report in playwright?

npx playwright show-report

add custom field and post title to cf7 mail body

add_action( 'wpcf7_before_send_mail', function( $contact_form ) {

    $submission = WPCF7_Submission::get_instance();
    if ( ! $submission ) return;

    $url = $submission->get_meta( 'url' );
    if ( ! $url ) return;

    $post_id = url_to_postid( $url );
    if ( ! $post_id ) return;

    $post_title = get_the_title( $post_id );

    if ( function_exists( 'get_field' ) ) {
        $download_url = get_field( 'pdf_link', $post_id );
    } else {
        $download_url = get_post_meta( $post_i

mailhog

Ok chill, để mình gom hết lại thành **một hướng dẫn gọn – rõ – chạy được ngay**, từ lúc cài MailHog bằng Homebrew cho tới lúc WordPress test mail, cả case chạy bằng Docker hoặc chạy thuần trên máy.

---

# 🚀 HƯỚNG DẪN FULL: CÀI MAILHOG + SETUP WORDPRESS (DOCKER & NON-DOCKER)

## 🟩 PHẦN 1 — Cài MailHog bằng Homebrew

### 1. Cài đặt

```bash
brew install mailhog
```

### 2. Chạy MailHog

```bash
mailhog
```

### 3. Truy cập giao diện

* Web UI: **[http://localhost:8025](http://localhost:8025)**
* 

CloudShell Quick Reference

curl -fsSL https://cli.kiro.dev/install | bash

717. 1-bit and 2-bit Characters

We have two special characters: The first character can be represented by one bit 0. The second character can be represented by two bits (10 or 11). Given a binary array bits that ends with 0, return true if the last character must be a one-bit character.
/**
 * @param {number[]} bits
 * @return {boolean}
 */
var isOneBitCharacter = function(bits) {
    // Start from the first bit
    let i = 0;

    // Traverse until the second-to-last bit
    // (because the last bit is always 0, we want to see if it's consumed or not)
    while (i < bits.length - 1) {
        if (bits[i] === 1) {
            // If we see a '1', it must form a two-bit character (10 or 11)
            // So we skip TWO positions
            i += 2;
        } else {
            /

Project folder file structure

import os
from pathlib import Path

# -------------------------
# Define project name (main package)
# -------------------------
project_name = "src"  # More descriptive than "src"

# -------------------------
# Define additional folders
# -------------------------
cicd_folder       = "Github"
configs_folder    = "configs"
data_folder       = "data"
notebooks_folder  = "notebooks"
static_css_folder = "static/css"
templates_folder  = "templates"
tests_folder      = "tests"
scrip

Chatbot

print("Hello")
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain_classic.chains import ConversationChain
from langchain_classic.memory import ConversationBufferMemory
from langchain_classic.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_classic.schema import SystemMessage,HumanMessage
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY"
if not openai_api_key:
    raise ValueError("O

LangChain Core Package


## Messages

from langchain.core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
    ToolMessage,
    ToolMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
)

  ## Prompts
  
  from langchain.core.prompts import (
    PromptTemplate,
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
    AIMessag

Chatbot Prompt

🚀 Project Prompt: Build a Smart End-to-End Chatbot
🧩 Objective
Design and implement a robust, modular, and intelligent chatbot system using modern AI and web technologies. The chatbot should be capable of handling dynamic conversations, storing history, and providing a clean user interface.
🛠️ Tech Stack

🧠 Brain: LangChain + OpenAI (for LLM orchestration and prompt management)
⚙️ Backend: FastAPI (for serving the chatbot API)
💬 Frontend: Streamlit (for interactive chat UI)
🔒 Security: .

Correlation Matrix

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Load your dataset
df = pd.read_csv("your_data.csv")  # Replace with your actual file

# Compute correlation matrix
corr_matrix = df.corr(numeric_only=True)

# Plot heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Heatmap")
plt.tight_layout()
plt.show()

Pandas

final_df = pd.concat([
    temperature_humidity[['time', 'day_temperature_C', 'day_humidity_percent',
                          'dayofweek_sin', 'dayofweek_cos',
                          'dayofmonth_sin', 'dayofmonth_cos',
                          'dayofyear_sin', 'dayofyear_cos']],
    daily_counts[['COUNT']].rename(columns={'COUNT': 'complaint_count'})
], axis=1)

remove_outliers_iqr

import pandas as pd

# Sample data
data = {'temperature': [22, 23, 21, 24, 100, 22, 23, 25, 20, 21]}
df = pd.DataFrame(data)

# Function to remove outliers using IQR
def remove_outliers_iqr(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]

# Call the function
df_clean = remove_outliers_iqr(df

Model Visualization

import matplotlib.pyplot as plt
import seaborn as sns

# List of columns to plot
columns_to_plot = [
    'day_temperature_C', 'day_humidity_percent', 'complaint_count',
    'dayofweek_sin', 'dayofweek_cos',
    'dayofmonth_sin', 'dayofmonth_cos',
    'dayofyear_sin', 'dayofyear_cos'
]

# Loop through each column and plot KDE
for col in columns_to_plot:
    plt.figure(figsize=(10, 6))
    sns.kdeplot(df[col], shade=True, color='purple')
    plt.title(f'Density Plot of {col}')
    

MinMaxScaler

import pandas as pd
from sklearn.preprocessing import MinMaxScaler

# Example dataset (replace this with your own DataFrame)
df = pd.DataFrame({
    'temp_max_C': [25, 30, 35, 40],
    'precip_mm': [0.0, 5.0, 10.0, 50.0],
    'wind_speed_max_m_s': [2.5, 5.0, 7.5, 10.0],
    'day_of_week_sin': [0.5, 0.7, -0.3, -0.9]  # example of other feature
})

# Columns to scale
scale_cols = ['temp_max_C', 'precip_mm', 'wind_speed_max_m_s']

# Initialize scaler
scaler = MinMaxScaler()

# Fit 

boxplot

import matplotlib.pyplot as plt

# Create box plot
plt.figure(figsize=(14, 6))  # Optional: enlarge canvas
plt.boxplot(new_df['Power_Load_kW'], patch_artist=True, boxprops=dict(facecolor='lightblue', color='blue'),
            medianprops=dict(color='red'), whiskerprops=dict(color='black'),
            capprops=dict(color='black'), flierprops=dict(marker='o', color='orange', alpha=0.5))

# Add title and labels
plt.title('Box Plot Example', fontsize=16)
plt.ylabel('Value', fontsize=14)